Advertisements
Advertisements
प्रश्न
If `(5x + 6y)/(5u + 6v) = (5x - 6y)/(5u - 6v)`; then prove that x : y = u : v.
उत्तर
`(5x + 6y)/(5u + 6v) = (5x - 6y)/(5u - 6v)` ...(By aletrnendo)
`(5x + 6y)/(5x - 6y) = (5u + 6v)/(5u - 6v)`
`(5x + 6y + 5x - 6y)/(5x + 6y - 5x + 6y) = (5u + 6v + 5u - 6v)/(5u + 6v - 5u + 6v)` ...(By componendo and dividendo)
`(10x)/(12y) = (10u)/(12v)`
`x/y = u/v`
APPEARS IN
संबंधित प्रश्न
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^3 + 1)`
If `x = (6ab)/(a + b)`, find the value of `(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b)`.
If `(x^3 + 3xy^2)/(3x^2y + y^3) = (m^3 + 3mn^2)/(3m^2n + n^3)`, show that nx = my.
If a : b = c : d , then prove that `("a"^2 + "ab" +
"b"^2)/("a"^2 - "ab" + "b"^2) = ("c"^2 + "cd"+ "d"^2)/("c"^2 - "cd" + "d"^2)`
If p, q, r ands are In continued proportion, then prove that (p3+q3+r3) ( q3+r3+s3) : : P : s
Find x, if `16((a - x)/(a + x))^3 = (a + x)/(a - x)`.
If `p/q = r/s`, prove that `(2p + 3q)/(2p - 3q) = (2r + 3s)/(2r - 3s)`.
Solve x : `(sqrt(36x + 1) + 6sqrt(x))/(sqrt(36x + 1) -6sqrt(x))` = 9
Solve for `x : 16((a - x)/(a + x))^3 = (a + x)/(a - x)`
Give `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` Using componendo and dividendo find x : y.