Advertisements
Advertisements
प्रश्न
If `(5x + 6y)/(5u + 6v) = (5x - 6y)/(5u - 6v)`; then prove that x : y = u : v.
उत्तर
`(5x + 6y)/(5u + 6v) = (5x - 6y)/(5u - 6v)` ...(By aletrnendo)
`(5x + 6y)/(5x - 6y) = (5u + 6v)/(5u - 6v)`
`(5x + 6y + 5x - 6y)/(5x + 6y - 5x + 6y) = (5u + 6v + 5u - 6v)/(5u + 6v - 5u + 6v)` ...(By componendo and dividendo)
`(10x)/(12y) = (10u)/(12v)`
`x/y = u/v`
APPEARS IN
संबंधित प्रश्न
If (7a + 8b)(7c – 8d) = (7a – 8b)(7c + 8d); prove that a : b = c : d.
If (a + b + c + d) (a – b – c + d) = (a + b – c – d) (a – b + c – d), prove that a : b = c : d.
If a : b : : c : d, then prove that
7a+11b : 7a -11b = 7c +11d : 7c - 11d
If `(7"a" + 12"b")/(7"c" + 12"d")` then prove that `"a"/"b"="c"/"d"`
If y = `(sqrt(a + 3b) + sqrt(a - 3b))/(sqrt(a + 3b) - sqrt(a - 3b))`, show that 3by2 - 2ay + 3b = 0.
Using componendo and idendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)` = 9
if `(3a + 4b)/(3c + 4d) = (3a - 4b)/(3c - 4d)` Prove that `a/b = c/d`.
If `(3x + 4y)/(3u + 4v) = (3x - 4y)/(3u - 4v)`, then show that `x/y = u/v`.
If (a + 3b + 2c + 6d) (a – 3b – 2c + 6d) = (a + 3b – 2c – 6d) (a – 3b + 2c – 6d), prove that a : b :: c : d.
Give `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` Using componendo and dividendo find x : y.