Advertisements
Advertisements
प्रश्न
Given, `a/b = c/d`, prove that: `(3a - 5b)/(3a + 5b) = (3c - 5d)/(3c + 5d)`
उत्तर
`a/b = c/d`
`(3a)/(5b) = (3c)/(5d)` ...`("Multiplying each side by" 3/5)`
`(3a + 5b)/(3a - 5b) = (3c + 5d)/(3c - 5d)` ...(By componendo and divdendo)
`(3a - 5b)/(3a + 5b)= (3c - 5d)/(3c + 5d)` ...(By invertendo)
APPEARS IN
संबंधित प्रश्न
If (a + b + c + d) (a – b – c + d) = (a + b – c – d) (a – b + c – d), prove that a : b = c : d.
If `(a - 2b - 3c + 4d)/(a + 2b - 3c - 4d) = (a - 2b + 3c - 4d)/(a + 2b + 3c + 4d)`, show that: 2ad = 3bc.
Using componendo and dividendo, find the value of x:
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)) = 9`
If `x = (sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1) - sqrt(a - 1))`, using properties of proportion show that: x2 – 2ax + 1 = 0.
If a : b : : c : d, then prove that
`(4"a" + 9"b")/(4"c" + 9"d") = (4"a" - 9"b")/(4"c" - 9"d")`
If p, q, r ands are In continued proportion, then prove that (p3+q3+r3) ( q3+r3+s3) : : P : s
Find x, if `16((a - x)/(a + x))^3 = (a + x)/(a - x)`.
Show, that a, b, c, d are in proportion if:
(6a + 7b) : (6c + 7d) : : (6a - 7b) : (6c - 7d)
If y = `(sqrt(a + 3b) + sqrt(a - 3b))/(sqrt(a + 3b) - sqrt(a - 3b))`, show that 3by2 - 2ay + 3b = 0.
If (m + n) : (n – m) = 5 : 2 ; m : n is ______.