Advertisements
Advertisements
प्रश्न
If a : b : : c : d, then prove that
`(4"a" + 9"b")/(4"c" + 9"d") = (4"a" - 9"b")/(4"c" - 9"d")`
उत्तर
`(4"a" + 9"b")/(4"c" + 9"d") = (4"a" - 9"b")/(4"c" - 9"d")`
`"a"/"b" = "c"/"d"`
Multiplying both sides by `4/9`
`=> "a"/"b" xx 4/9 = "c"/"d" xx 4/9`
`=> (4"a")/(9"b") = (4"c")/(9"d")`
Applying componendo and dividendo,
`(4"a" + 9"b")/(4"a" - 9"b") = (4"c" + 9"d")/(4"c" - 9"d")`
`=> (4"a" + 9"b")/(4"c" + 9"d") = (4"a" - 9"b")/(4"c" - 9"d")`
Hence, 4a + 9b : 4c + 9d = 4a - 9b : 4c - 9d
APPEARS IN
संबंधित प्रश्न
If (7a + 8b)(7c – 8d) = (7a – 8b)(7c + 8d); prove that a : b = c : d.
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `x/y`
If `(8a - 5b)/(8c - 5d) = (8a + 5b)/(8c + 5d), "prove that" a/b = c/d.`
If `a/b = c/d,` show that (9a + 13b) (9c - 13d) = (9c + 13b) (9a - 13d).
If `(3x + 4y)/(3u + 4v) = (3x - 4y)/(3u - 4v)`, then show that `x/y = u/v`.
Find x from the following equations : `(sqrt(2 - x) + sqrt(2 + x))/(sqrt(2 - x) - sqrt(2 + x)` = 3
Solve `(1 + x + x^2)/(1 - x + x^2) = (62(1 +x))/(63(1 + x)`
Using the properties of proportion, solve the following equation for x; given `(x^3 + 3x)/(3x^2 + 1) = (341)/(91)`
If a : b = 2 : 1, the value of (7a + 4b) : (5a – 2b) is ______.
If x = y, the value of (3x + y) : (5x – 3y) is ______.