Advertisements
Advertisements
प्रश्न
Using the properties of proportion, solve the following equation for x; given `(x^3 + 3x)/(3x^2 + 1) = (341)/(91)`
उत्तर
`(x^3 + 3x)/(3x^2 + 1) = (341)/(91)`
Applying componendo and dividendo
`(x^3 + 3x + 3x^2 + 1)/(x^3 + 3x- 3x^2 - 1) = (341 + 91)/(341 - 91)`
⇒ `(x + 1)^3/(x - 1)^3 = (432)/(250)`
⇒ `(x + 1)^3/(x - 1)^3 = (216)/(125)`
⇒ `(x + 1)^3/(x - 1)^3 = (6/5)^3`
⇒ `(x + 1)/(x - 1) = (6)/(5)`
⇒ 6x – 6 = 5x + 5
⇒ 6x – 5x = 5 + 6
⇒ x = 11
APPEARS IN
संबंधित प्रश्न
if x = `(sqrt(a + 1) + sqrt(a-1))/(sqrt(a + 1) - sqrt(a - 1))` using properties of proportion show that `x^2 - 2ax + 1 = 0`
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^3 + 1)`
If a : b = c : d, prove that: (9a + 13b)(9c – 13d) = (9c + 13d)(9a – 13b).
If `x = (6ab)/(a + b)`, find the value of `(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b)`.
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` using componendo and divendo find x : y
If y = `(sqrt(a + 3b) + sqrt(a - 3b))/(sqrt(a + 3b) - sqrt(a - 3b))`, show that 3by2 - 2ay + 3b = 0.
If a : b : : c : d, prove that (2a + 3b)(2c – 3d) = (2a – 3b)(2c + 3d)
If `(by + cz)/(b^2 + c^2) = (cz + ax)/(c^2 + a^2) = (ax + by)/(a^2 + b^2)`, prove that each of these ratio is equal to `x/a = y/b = z/c`
If `(x^2 - 1)/(x^2 + 1) = 3/5`, the value of x is ______.
If `(x^2 - 4)/(x^2 + 4) = 3/5`, the value of x is ______.