Advertisements
Advertisements
प्रश्न
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^3 + 1)`
उत्तर
x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2))`
By componendo and dividendo,
`(x + 1)/(x - 1) = (sqrt(a^2 + b^2) + sqrt(a^2 - b^2) + sqrt(a^2 + b^2) - sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) + sqrt(a^2 - b^2) - sqrt(a^2 + b^2) + sqrt(a^2 - b^2))`
(x + 1)/(x - 1) = `(2sqrt(a^2 + b^2))/(2sqrt(a^2 - b^2))`
Squaring both sides,
`(x^2 + 2x + 1)/(x^2 - 2x + 1) = (a^2 + b^2)/(a^2 - b^2)`
By componendo and dividend
`((x^2 + 2x + 1)+ (x^2 - 2x + 1))/((x^2 + 2x +1) - (x^2 - 2x + 1)) = ((a^2 + b^2) + (a^2 - b^2))/((a^2 + b^2)-(a^2 - b^2))`
`=> (2(x^2 + 1))/"4x" = (2a^2)/(2b^2)`
`=> (x^2 + 1)/(2x) = a^2/b^2`
`=> b^2 = (2a^2x)/(x^2 + 1)`
Hence Proved
APPEARS IN
संबंधित प्रश्न
Using componendo and dividendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x -5))/(sqrt(3x + 4)-sqrt(3x - 5)) = 9`
If `a = (4sqrt6)/(sqrt2 + sqrt3)`, find the value of `(a + 2sqrt2)/(a - 2sqrt2) + (a + 2sqrt3)/(a - 2sqrt3)`.
Using the properties of proportion solve for x given `(x^4 + 1)/(2x^2) = 17/8`
If (4a + 9b)(4c – 9d) = (4a – 9b)(4c + 9d), prove that: a : b = c : d.
If x = `(root (3)("m + 1") + root (3)("m - 1"))/(root (3)("m + 1") + root (3)("m - 1")` then prove that x3 - 3mx2 + 3x = m
Show, that a, b, c, d are in proportion if:
(6a + 7b) : (6c + 7d) : : (6a - 7b) : (6c - 7d)
Given that `(a^3 + 3ab^2)/(b^2 + 3a^2b) = (63)/(62)`.
Using Componendo and Dividendo find a : b.
If a : b : : c : d, prove that (2a + 3b)(2c – 3d) = (2a – 3b)(2c + 3d)
If a : b : : c : d, prove that (la + mb) : (lc + mb) :: (la – mb) : (lc – mb)
Find x from the following equations : `(sqrt(12x + 1) + sqrt(2x - 3))/(sqrt(12x + 1) - sqrt(2x - 3)) = (3)/(2)`