Advertisements
Advertisements
प्रश्न
If x = `(root (3)("m + 1") + root (3)("m - 1"))/(root (3)("m + 1") + root (3)("m - 1")` then prove that x3 - 3mx2 + 3x = m
उत्तर
`"x"/1 = (root (3)("m + 1") + root (3)("m - 1"))/(root (3)("m + 1") + root (3)("m - 1")`
Applying componendo and dividendo
`("x"+ 1) /("x" - 1) = (root (3)("m + 1") + root (3)("m - 1") + root (3)("m + 1") - root (3)("m - 1"))/ (root (3)("m + 1") + root (3)("m - 1") - root (3)("m + 1") + root (3)("m - 1")`
`=> ("x"+ 1) /("x" - 1) = (2 root (3)("m" + 1))/(2 root (3)("m" - 1))`
Cubing both sides
`=> ("x" + 1)^3/("x - 1")^3 = (8 ("m + 1"))/(8("m - 1"))`
`=> ("x"^3 + 3"x"^2 +3"x" +1)/("x"^3 - 3"x"^2 + 3"x" -1) = ("m + 1")/("m - 1")`
⇒ (m - 1) (x3 + 3x2 + 3x + 1) = (m + 1 )(x3 - 3x2 + 3x - 1)
⇒ mx3 + 3mx2 + 3mx + m - x3 - 3x2 - 3x - 1 - mx3 - 3mx2 + 3mx - m + x3 - 3x2 + 3x -1
⇒ 6mx2 + 2m - 2x3 - 6x = 0
⇒ 3mx2+ m - x3 - 3x = O
⇒ x3 - 3mx2 + 3x = m
Hence Proved.
APPEARS IN
संबंधित प्रश्न
If (a + b + c + d) (a – b – c + d) = (a + b – c – d) (a – b + c – d), prove that a : b = c : d.
If `(x^3 + 3xy^2)/(3x^2y + y^3) = (m^3 + 3mn^2)/(3m^2n + n^3)`, show that nx = my.
If a : b = c : d , then prove that `("a"^2 + "ab" +
"b"^2)/("a"^2 - "ab" + "b"^2) = ("c"^2 + "cd"+ "d"^2)/("c"^2 - "cd" + "d"^2)`
If p, q, r ands are In continued proportion, then prove that (p3+q3+r3) ( q3+r3+s3) : : P : s
Show, that a, b, c, d are in proportion if:
(6a + 7b) : (6c + 7d) : : (6a - 7b) : (6c - 7d)
Solve for x : `(1 - px)/(1 + px) = sqrt((1 + qx)/(1 - qx)`
Find x from the following equations : `(sqrt(1 + x) + sqrt(1 - x))/(sqrt(1 + x) - sqrt(1 - x)) = a/b`
Find x from the following equations : `(sqrt(a + x) + sqrt(a - x))/(sqrt(a + x) - sqrt(a - x)) = c/d`
Using the properties of proportion, solve the following equation for x; given `(x^3 + 3x)/(3x^2 + 1) = (341)/(91)`
If `(x^2 - 4)/(x^2 + 4) = 3/5`, the value of x is ______.