Advertisements
Advertisements
Question
If x = `(root (3)("m + 1") + root (3)("m - 1"))/(root (3)("m + 1") + root (3)("m - 1")` then prove that x3 - 3mx2 + 3x = m
Solution
`"x"/1 = (root (3)("m + 1") + root (3)("m - 1"))/(root (3)("m + 1") + root (3)("m - 1")`
Applying componendo and dividendo
`("x"+ 1) /("x" - 1) = (root (3)("m + 1") + root (3)("m - 1") + root (3)("m + 1") - root (3)("m - 1"))/ (root (3)("m + 1") + root (3)("m - 1") - root (3)("m + 1") + root (3)("m - 1")`
`=> ("x"+ 1) /("x" - 1) = (2 root (3)("m" + 1))/(2 root (3)("m" - 1))`
Cubing both sides
`=> ("x" + 1)^3/("x - 1")^3 = (8 ("m + 1"))/(8("m - 1"))`
`=> ("x"^3 + 3"x"^2 +3"x" +1)/("x"^3 - 3"x"^2 + 3"x" -1) = ("m + 1")/("m - 1")`
⇒ (m - 1) (x3 + 3x2 + 3x + 1) = (m + 1 )(x3 - 3x2 + 3x - 1)
⇒ mx3 + 3mx2 + 3mx + m - x3 - 3x2 - 3x - 1 - mx3 - 3mx2 + 3mx - m + x3 - 3x2 + 3x -1
⇒ 6mx2 + 2m - 2x3 - 6x = 0
⇒ 3mx2+ m - x3 - 3x = O
⇒ x3 - 3mx2 + 3x = m
Hence Proved.
APPEARS IN
RELATED QUESTIONS
If a : b = c : d, prove that: 5a + 7b : 5a – 7b = 5c + 7d : 5c – 7d.
If `x = (sqrt(m + n) + sqrt(m - n))/(sqrt(m + n) - sqrt(m - n))`, express n in terms of x and m.
If (pa + qb) : (pc + qd) :: (pa – qb) : (pc – qd) prove that a : b : : c : d
If (11a² + 13b²) (11c² – 13d²) = (11a² – 13b²)(11c² + 13d²), prove that a : b :: c : d.
Find x from the following equations : `(sqrt(2 - x) + sqrt(2 + x))/(sqrt(2 - x) - sqrt(2 + x)` = 3
Find x from the following equations : `(sqrt(a + x) + sqrt(a - x))/(sqrt(a + x) - sqrt(a - x)) = c/d`
Solve `(1 + x + x^2)/(1 - x + x^2) = (62(1 +x))/(63(1 + x)`
If x = `(root(3)(a + 1) + root(3)(a - 1))/(root(3)(a + 1) - root(3)(a - 1)`,prove that :
x³ – 3ax² + 3x – a = 0
If `(by + cz)/(b^2 + c^2) = (cz + ax)/(c^2 + a^2) = (ax + by)/(a^2 + b^2)`, prove that each of these ratio is equal to `x/a = y/b = z/c`
If x = y, the value of (3x + y) : (5x – 3y) is ______.