Advertisements
Advertisements
Question
If (11a² + 13b²) (11c² – 13d²) = (11a² – 13b²)(11c² + 13d²), prove that a : b :: c : d.
Solution
(11a² + 13b²) (11c² – 13d²) = (11a² – 13b²)(11c² + 13d²)
⇒ `(11a + 13b^2)/(11a^2 - 13b^2) = (11c^2 + 13d^2)/(11c^2 - 13d^2)`
Applying componendo and dividendo
`(11a^2 + 13b^2 + 11a^2 - 13b^2)/(11a^2 + 13b^2 - 11a^2 + 13b^2) = (11c^2 + 13d^2 + 11c^2 - 13d^2)/(11c^2 + 13d^2 - 11c^2 + 13d^2)`
⇒ `(22a^2)/(26b^2) = (22c^2)/(26d^2)`
⇒ `a^2/b^2 = c^2/d^2 ...("Dividing by" 22/26)`
⇒ `a/b = c/d`
Hence a : b :: c : d.
APPEARS IN
RELATED QUESTIONS
If (a + b + c + d) (a – b – c + d) = (a + b – c – d) (a – b + c – d), prove that a : b = c : d.
Show, that a, b, c, d are in proportion if:
(6a + 7b) : (6c + 7d) : : (6a - 7b) : (6c - 7d)
Using componendo and idendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)` = 9
If a : b = c : d, show that (2a - 7b) (2c + 7d) = (2c - 7d) (2a + 7b).
If `(8a - 5b)/(8c - 5a) = (8a + 5b)/(8c + 5d)`, prove that `a/b = c/d`
If (pa + qb) : (pc + qd) :: (pa – qb) : (pc – qd) prove that a : b : : c : d
If x = `(sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1 - sqrt(a - 1)`, using properties of proportion, show that x2 – 2ax + 1 = 0
Using the properties of proportion, solve the following equation for x; given `(x^3 + 3x)/(3x^2 + 1) = (341)/(91)`
If x = `"pab"/(a + b)`, provee that `(x + pa)/(x - pa) - (x + pb)/(x - pb) = (2(a^2 - b^2))/(ab)`
`(x + y)/z = (y + z)/x = (z + x)/y` is equal to ______.