Advertisements
Advertisements
Questions
If (a + b + c + d) (a – b – c + d) = (a + b – c – d) (a – b + c – d), prove that a : b = c : d.
Show, that a, b, c, d are in proportion if: (a + b + c + d) (a – b – c + d) = (a + b – c – d) (a – b + c – d)
Solution 1
Given, `(a + b + c + d)/(a + b - c - d) = (a - b + c - d)/(a - b - c + d)`
Applying componendo and dividendo,
`((a + b + c + d) + (a + b - c - d))/((a + b + c + d) - (a + b - c - d)) = ((a - b + c - d) + (a - b - c + d))/((a - b + c - d) - (a - b - c + d))`
`(2(a + b))/(2(c + d)) = (2(a - b))/(2(c - d))`
`(a + b)/(c + d) = (a - b)/(c -d)`
`(a + b)/(a - b) = (c + d)/(c - d)`
Applying componendo and dividendo,
`(a + b + a - b)/(a + b - a - b) = (c + d + c - d)/(c + d - c + d )`
`(2a)/(2b) = (2c)/(2d)`
`a/b = c/d`
Solution 2
We have `a/b = c/d`
Applying componendo and dividendo
⇒ `(a + b)/(a - b) = (c + d)/(c - d)`
Applying alternendo
⇒ `(a + b)/(c + d) = (a - b)/(c - d)`
Again, applying componendo and dividendo
`(a + b + c + d)/(a + b - c - d) = (a - b + c - d)/(a - b - c + d)`
⇒ (a + b + c + d) (a – b – c + d)
= (a + b – c – d) (a – b + c – d).
Hence proved.
RELATED QUESTIONS
If a : b = c : d, prove that: (6a + 7b)(3c – 4d) = (6c + 7d)(3a – 4b).
If (7a + 8b)(7c – 8d) = (7a – 8b)(7c + 8d); prove that a : b = c : d.
If `x = (2ab)/(a + b)`, find the value of `(x + a)/(x - a) + (x +b)/(x - b)`.
If y = `((p + 1)^(1/3) + (p - 1)^(1/3))/((p + 1)^(1/3) - (p - 1)^(1/3)` find that y3 - 3py2 + 3y - p = 0.
Solve for x : `(1 - px)/(1 + px) = sqrt((1 + qx)/(1 - qx)`
If a : b = c : d, show that (2a - 7b) (2c + 7d) = (2c - 7d) (2a + 7b).
If (11a² + 13b²) (11c² – 13d²) = (11a² – 13b²)(11c² + 13d²), prove that a : b :: c : d.
Solve x : `(sqrt(36x + 1) + 6sqrt(x))/(sqrt(36x + 1) -6sqrt(x))` = 9
Find x from the following equations : `(sqrt(1 + x) + sqrt(1 - x))/(sqrt(1 + x) - sqrt(1 - x)) = a/b`
Given that `(a^3 + 3ab^2)/(b^3 + 3a^2b) = (63)/(62)`. Using componendo and dividendo find a: b.