Advertisements
Advertisements
प्रश्न
If (a + b + c + d) (a – b – c + d) = (a + b – c – d) (a – b + c – d), prove that a : b = c : d.
Show, that a, b, c, d are in proportion if: (a + b + c + d) (a – b – c + d) = (a + b – c – d) (a – b + c – d)
उत्तर १
Given, `(a + b + c + d)/(a + b - c - d) = (a - b + c - d)/(a - b - c + d)`
Applying componendo and dividendo,
`((a + b + c + d) + (a + b - c - d))/((a + b + c + d) - (a + b - c - d)) = ((a - b + c - d) + (a - b - c + d))/((a - b + c - d) - (a - b - c + d))`
`(2(a + b))/(2(c + d)) = (2(a - b))/(2(c - d))`
`(a + b)/(c + d) = (a - b)/(c -d)`
`(a + b)/(a - b) = (c + d)/(c - d)`
Applying componendo and dividendo,
`(a + b + a - b)/(a + b - a - b) = (c + d + c - d)/(c + d - c + d )`
`(2a)/(2b) = (2c)/(2d)`
`a/b = c/d`
उत्तर २
We have `a/b = c/d`
Applying componendo and dividendo
⇒ `(a + b)/(a - b) = (c + d)/(c - d)`
Applying alternendo
⇒ `(a + b)/(c + d) = (a - b)/(c - d)`
Again, applying componendo and dividendo
`(a + b + c + d)/(a + b - c - d) = (a - b + c - d)/(a - b - c + d)`
⇒ (a + b + c + d) (a – b – c + d)
= (a + b – c – d) (a – b + c – d).
Hence proved.
संबंधित प्रश्न
if x = `(sqrt(a + 1) + sqrt(a-1))/(sqrt(a + 1) - sqrt(a - 1))` using properties of proportion show that `x^2 - 2ax + 1 = 0`
If a : b = c : d, prove that: (6a + 7b)(3c – 4d) = (6c + 7d)(3a – 4b).
If 7x – 15y = 4x + y, find the value of x : y. Hence, use componendo and dividendo to find the values of:
`(9x + 5y)/(9x - 5y)`
If a : b :: c : d :: e : f, then prove that `("ae" + "bf")/("ae" - "bf")` = `("ce" + "df")/("ce" - "df")`
If x = `(root (3)("m + 1") + root (3)("m - 1"))/(root (3)("m + 1") + root (3)("m - 1")` then prove that x3 - 3mx2 + 3x = m
Show, that a, b, c, d are in proportion if:
(6a + 7b) : (6c + 7d) : : (6a - 7b) : (6c - 7d)
If y = `((p + 1)^(1/3) + (p - 1)^(1/3))/((p + 1)^(1/3) - (p - 1)^(1/3)` find that y3 - 3py2 + 3y - p = 0.
Given : x = `(sqrt(a^2 + b^2)+sqrt(a^2 - b^2))/(sqrt(a^2 + b^2)-sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^2 + 1)`.
If (a + 3b + 2c + 6d) (a – 3b – 2c + 6d) = (a + 3b – 2c – 6d) (a – 3b + 2c – 6d), prove that a : b :: c : d.
Find x from the following equations : `(sqrt(2 - x) + sqrt(2 + x))/(sqrt(2 - x) - sqrt(2 + x)` = 3