Advertisements
Advertisements
प्रश्न
Show, that a, b, c, d are in proportion if:
(6a + 7b) : (6c + 7d) : : (6a - 7b) : (6c - 7d)
उत्तर
We have,
`a/c = c/d`
`("Both sides are multiplied by" (6)/(7))`
⇒ `(6a)/(7b) = (6c)/(7d)`
Applying componendo and dividendo
`(6a + 7b)/(6a - 7b) = (6c + 7d)/(6c - 7d)`
Applying alternendo
`(6a + 7b)/(6c + 7d) = (6a - 7b)/(6c - 7d)`
(6a + 7b ) : (6c + 7d) :: (6a - 7b) (6c - 7d).
APPEARS IN
संबंधित प्रश्न
If `(7m + 2n)/(7m - 2n) = 5/3`, use properties of proportion to find:
- m : n
- `(m^2 + n^2)/(m^2 - n^2)`
if `(x^2 + y^2)/(x^2 - y^2) = 17/8`then find the value of :
1) x : y
2) `(x^3 + y^3)/(x^3 - y^3)`
If a : b = c : d, prove that: (9a + 13b)(9c – 13d) = (9c + 13d)(9a – 13b).
Given, `a/b = c/d`, prove that: `(3a - 5b)/(3a + 5b) = (3c - 5d)/(3c + 5d)`
If x = `(root (3)("m + 1") + root (3)("m - 1"))/(root (3)("m + 1") + root (3)("m - 1")` then prove that x3 - 3mx2 + 3x = m
If `(8a - 5b)/(8c - 5d) = (8a + 5b)/(8c + 5d), "prove that" a/b = c/d.`
Find the value of
`(x + sqrt(3))/(x - sqrt(3)) + (x + sqrt(2))/(x - sqrt(2)), if x = (2sqrt(6))/(sqrt(3) + sqrt(2)`.
Give `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` Using componendo and dividendo find x : y.
If (a + b) : (a – b) = 13 : 3 ; a : b is ______.
If x = y, the value of (3x + y) : (5x – 3y) is ______.