Advertisements
Advertisements
प्रश्न
if `(x^2 + y^2)/(x^2 - y^2) = 17/8`then find the value of :
1) x : y
2) `(x^3 + y^3)/(x^3 - y^3)`
उत्तर १
It is given that:
`(x^2 + y^2)/(x^2 - y^2) = 17/8`
Applying componendo-dividendo.
`(x^2 + y^2 + x^2 - y^2)/(x^2 + y^2 - x^2 + y^2) = (17 + 8)/(17 - 8)`
`=> (2x^2)/(2y^2) = 25/9`
`=> x^2/y^2 = 25/9`
`=> x/y = +-5/3`
`=> x: y = 5 : 3`
2) `x/y = +- 5/3`
`x/y = 5/3`
`=> x^3/y^3 = 125/27`
Applying componendo-dividendo, we get
`(x^3 + y^3)/(x^3 - y^3) = (125 + 27)/(125 - 27)`
`=> (x^3 + y^3)/(x^3- y^3) = 152/98`
`=> (x^3 + y^3)/(x^3 - y^3) = 76/49`
or
`x/y = -5/3`
`"x"^3/"y"^3 = -125/27`
Applying componendo-dividendo, we get
`(x^3 + y^3)/(x^3 - y^3) = (-125 + 27)/(-125-27)`
`= (- 98)/- 152`
`= 49/76`
उत्तर २
(i) `(x^2 + y^2)/(x^2 - y^2) = 17/8`
Applying componendo-dividendo rule,
`(x^2 + y^2 + x^2 - y^2)/(x^2 + y^2 - x^2 + y^2) = (17 + 8)/(17 - 8)`
`(2x^2)/(2y^2) = (25)/(9)`
` x^2/y^2 = (25)/(9)`
`x/y = (5)/(3)`
`x: y = 5 : 3`.
(ii) `x/y = (5)/(3)`
Taking cube on both sides,
`x^3/y^3 = (125)/(27)`
Applying componendo-dividendo rule,
`(x^3 + y^3)/(x^3 - y^3) = (125 + 27)/(125 - 27)`
`(x^3 + y^3)/(x^3- y^3) = 152/98`.
APPEARS IN
संबंधित प्रश्न
If `(7m + 2n)/(7m - 2n) = 5/3`, use properties of proportion to find:
- m : n
- `(m^2 + n^2)/(m^2 - n^2)`
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3+ 27y)/(9y^2 + 27)`. Using componendo and dividendo find x : y.
If a : b = c : d, prove that: (9a + 13b)(9c – 13d) = (9c + 13d)(9a – 13b).
If a : b : : c : d, then prove that
`(4"a" + 9"b")/(4"c" + 9"d") = (4"a" - 9"b")/(4"c" - 9"d")`
If `(3x + 5y)/(3x - 5y) = (7)/(3)`, find x : y.
If `a/b = c/d,` show that (9a + 13b) (9c - 13d) = (9c + 13b) (9a - 13d).
If (ma + nb): b :: (mc + nd) : d, prove that a, b, c, d are in proportion.
Find x from the following equations : `(sqrt(x + 4) + sqrt(x - 10))/(sqrt(x + 4) - sqrt(x - 10)) = (5)/(2)`
Using the properties of proportion, solve the following equation for x; given `(x^3 + 3x)/(3x^2 + 1) = (341)/(91)`
If `(x^2 - 1)/(x^2 + 1) = 3/5`, the value of x is ______.