Advertisements
Advertisements
Question
if `(x^2 + y^2)/(x^2 - y^2) = 17/8`then find the value of :
1) x : y
2) `(x^3 + y^3)/(x^3 - y^3)`
Solution 1
It is given that:
`(x^2 + y^2)/(x^2 - y^2) = 17/8`
Applying componendo-dividendo.
`(x^2 + y^2 + x^2 - y^2)/(x^2 + y^2 - x^2 + y^2) = (17 + 8)/(17 - 8)`
`=> (2x^2)/(2y^2) = 25/9`
`=> x^2/y^2 = 25/9`
`=> x/y = +-5/3`
`=> x: y = 5 : 3`
2) `x/y = +- 5/3`
`x/y = 5/3`
`=> x^3/y^3 = 125/27`
Applying componendo-dividendo, we get
`(x^3 + y^3)/(x^3 - y^3) = (125 + 27)/(125 - 27)`
`=> (x^3 + y^3)/(x^3- y^3) = 152/98`
`=> (x^3 + y^3)/(x^3 - y^3) = 76/49`
or
`x/y = -5/3`
`"x"^3/"y"^3 = -125/27`
Applying componendo-dividendo, we get
`(x^3 + y^3)/(x^3 - y^3) = (-125 + 27)/(-125-27)`
`= (- 98)/- 152`
`= 49/76`
Solution 2
(i) `(x^2 + y^2)/(x^2 - y^2) = 17/8`
Applying componendo-dividendo rule,
`(x^2 + y^2 + x^2 - y^2)/(x^2 + y^2 - x^2 + y^2) = (17 + 8)/(17 - 8)`
`(2x^2)/(2y^2) = (25)/(9)`
` x^2/y^2 = (25)/(9)`
`x/y = (5)/(3)`
`x: y = 5 : 3`.
(ii) `x/y = (5)/(3)`
Taking cube on both sides,
`x^3/y^3 = (125)/(27)`
Applying componendo-dividendo rule,
`(x^3 + y^3)/(x^3 - y^3) = (125 + 27)/(125 - 27)`
`(x^3 + y^3)/(x^3- y^3) = 152/98`.
APPEARS IN
RELATED QUESTIONS
If (a + b + c + d) (a – b – c + d) = (a + b – c – d) (a – b + c – d), prove that a : b = c : d.
If (7m +8n)(7p - 8q) = (7m - 8n)(7p + 8q), then prove that m: n = p: q
Show, that a, b, c, d are in proportion if:
(6a + 7b) : (6c + 7d) : : (6a - 7b) : (6c - 7d)
Given that `(a^3 + 3ab^2)/(b^2 + 3a^2b) = (63)/(62)`.
Using Componendo and Dividendo find a : b.
Find the value of
`(x + sqrt(3))/(x - sqrt(3)) + (x + sqrt(2))/(x - sqrt(2)), if x = (2sqrt(6))/(sqrt(3) + sqrt(2)`.
If `p/q = r/s`, prove that `(2p + 3q)/(2p - 3q) = (2r + 3s)/(2r - 3s)`.
If (4a + 5b) (4c – 5d) = (4a – 5d) (4c + 5d), prove that a, b, c, d are in proporton.
If (ma + nb): b :: (mc + nd) : d, prove that a, b, c, d are in proportion.
Find x from the following equations : `(3x + sqrt(9x^2 - 5))/(3x - sqrt(9x^2 - 5)) = (5)/(1)`
If `(x^2 - 1)/(x^2 + 1) = 3/5`, the value of x is ______.