Advertisements
Advertisements
प्रश्न
if `(x^2 + y^2)/(x^2 - y^2) = 17/8`then find the value of :
1) x : y
2) `(x^3 + y^3)/(x^3 - y^3)`
उत्तर १
It is given that:
`(x^2 + y^2)/(x^2 - y^2) = 17/8`
Applying componendo-dividendo.
`(x^2 + y^2 + x^2 - y^2)/(x^2 + y^2 - x^2 + y^2) = (17 + 8)/(17 - 8)`
`=> (2x^2)/(2y^2) = 25/9`
`=> x^2/y^2 = 25/9`
`=> x/y = +-5/3`
`=> x: y = 5 : 3`
2) `x/y = +- 5/3`
`x/y = 5/3`
`=> x^3/y^3 = 125/27`
Applying componendo-dividendo, we get
`(x^3 + y^3)/(x^3 - y^3) = (125 + 27)/(125 - 27)`
`=> (x^3 + y^3)/(x^3- y^3) = 152/98`
`=> (x^3 + y^3)/(x^3 - y^3) = 76/49`
or
`x/y = -5/3`
`"x"^3/"y"^3 = -125/27`
Applying componendo-dividendo, we get
`(x^3 + y^3)/(x^3 - y^3) = (-125 + 27)/(-125-27)`
`= (- 98)/- 152`
`= 49/76`
उत्तर २
(i) `(x^2 + y^2)/(x^2 - y^2) = 17/8`
Applying componendo-dividendo rule,
`(x^2 + y^2 + x^2 - y^2)/(x^2 + y^2 - x^2 + y^2) = (17 + 8)/(17 - 8)`
`(2x^2)/(2y^2) = (25)/(9)`
` x^2/y^2 = (25)/(9)`
`x/y = (5)/(3)`
`x: y = 5 : 3`.
(ii) `x/y = (5)/(3)`
Taking cube on both sides,
`x^3/y^3 = (125)/(27)`
Applying componendo-dividendo rule,
`(x^3 + y^3)/(x^3 - y^3) = (125 + 27)/(125 - 27)`
`(x^3 + y^3)/(x^3- y^3) = 152/98`.
APPEARS IN
संबंधित प्रश्न
If a : b = c : d, prove that: (6a + 7b)(3c – 4d) = (6c + 7d)(3a – 4b).
If `(5x + 6y)/(5u + 6v) = (5x - 6y)/(5u - 6v)`; then prove that x : y = u : v.
Using the properties of proportion solve for x given `(x^4 + 1)/(2x^2) = 17/8`
If 7x – 15y = 4x + y, find the value of x : y. Hence, use componendo and dividend to find the values of:
`(3x^2 + 2y^2)/(3x^2 - 2y^2)`
Solve for x : `(1 - px)/(1 + px) = sqrt((1 + qx)/(1 - qx)`
If `(3x + 4y)/(3u + 4v) = (3x - 4y)/(3u - 4v)`, then show that `x/y = u/v`.
If a : b : : c : d, prove that (2a + 3b)(2c – 3d) = (2a – 3b)(2c + 3d)
Find x from the following equations : `(sqrt(12x + 1) + sqrt(2x - 3))/(sqrt(12x + 1) - sqrt(2x - 3)) = (3)/(2)`
If a : b = 2 : 1, the value of (7a + 4b) : (5a – 2b) is ______.
If `x/(a + b - c) = y/(b + c - a) = z/(c + a - b) = 5` and a + b + c = 7; the value of x + y + z is ______.