Advertisements
Advertisements
प्रश्न
Using the properties of proportion solve for x given `(x^4 + 1)/(2x^2) = 17/8`
उत्तर
`(x^4 + 1)/(2x^2) = 17/8`
Applying componendo and dividendo we get
`(x^4 + 1 + 2x^2)/(x^4 + 1 - 2x^2) = (17 + 8)/(17 - 8)`
`=> ((x^2)^2 + (1)^2 + 2 xx x^2 + 1)/((x^2)^2 + (1)^2 - 2 xx x^2 xx 1) = 25/9`
`=> (x^2 + 1)^2/(x^2 - 1)^2 = 5^2/3^2`
`=> ((x^2 + 1)/(x^2 - 1))^2 = (5/3)^2`
`=> (x^2 + 1)/(x^2 - 1) = 5/3`
Applying componeddo and diividendo we get
`(x^2 + 1 + x^2 - 1)/(x^2 + 1 - x^2 + 1) = (5 + 3)/(5 - 3)`
`=> (2x^2)/2 = 8/2`
`=> x^2 = 4`
`=> x = +- 2`
APPEARS IN
संबंधित प्रश्न
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3+ 27y)/(9y^2 + 27)`. Using componendo and dividendo find x : y.
If a : b : : c : d, then prove that
7a+11b : 7a -11b = 7c +11d : 7c - 11d
If (7m +8n)(7p - 8q) = (7m - 8n)(7p + 8q), then prove that m: n = p: q
If y = `((p + 1)^(1/3) + (p - 1)^(1/3))/((p + 1)^(1/3) - (p - 1)^(1/3)` find that y3 - 3py2 + 3y - p = 0.
If `a/b = c/d,` show that (9a + 13b) (9c - 13d) = (9c + 13b) (9a - 13d).
If (4a + 5b) (4c – 5d) = (4a – 5d) (4c + 5d), prove that a, b, c, d are in proporton.
Find x from the following equations : `(sqrt(1 + x) + sqrt(1 - x))/(sqrt(1 + x) - sqrt(1 - x)) = a/b`
Find x from the following equations : `(sqrt(12x + 1) + sqrt(2x - 3))/(sqrt(12x + 1) - sqrt(2x - 3)) = (3)/(2)`
Find x from the following equations : `(sqrt(a + x) + sqrt(a - x))/(sqrt(a + x) - sqrt(a - x)) = c/d`
Using the properties of proportion, solve the following equation for x; given `(x^3 + 3x)/(3x^2 + 1) = (341)/(91)`