Advertisements
Advertisements
प्रश्न
If `x = (sqrt(m + n) + sqrt(m - n))/(sqrt(m + n) - sqrt(m - n))`, express n in terms of x and m.
उत्तर
`x = (sqrt(m + n) + sqrt(m - n))/(sqrt(m + n) - sqrt(m - n)`
Applying componendo and dividendo,
`(x + 1)/(x - 1) = (sqrt(m + n) + sqrt(m - n) + sqrt(m + n) - sqrt(m - n))/(sqrt(m + n) + sqrt(m - n) - sqrt(m + n) + sqrt(m - n))`
`(x + 1)/(x - 1) = (2sqrt(m + n))/(2sqrt(m - n))`
Squaring both sides,
`(x^2 + 2x + 1)/(x^2 - 2x + 1) = (m + n)/(m - n)`
Applying componendo and dividendo,
`(x^2 + 2x + 1 + x^2 - 2x + 1 )/(x^2 + 2x + 1 - x^2 + 2x - 1) =
(m + n + m - n)/(m + n - m + n)`
`(2x^2 + 2)/(4x) = (2m)/(2n)`
`(x^2 + 1)/(2x) = m/n`
`(x^2 + 1)/(2mx) = 1/n`
`n = (2mx)/(x^2 + 1)`
APPEARS IN
संबंधित प्रश्न
Using componendo and dividendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x -5))/(sqrt(3x + 4)-sqrt(3x - 5)) = 9`
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^3 + 1)`
Using componendo and dividendo, find the value of x:
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)) = 9`
If y = `(sqrt(a + 3b) + sqrt(a - 3b))/(sqrt(a + 3b) - sqrt(a - 3b))`, show that 3by2 - 2ay + 3b = 0.
If a : b : : c : d, prove that `(5a + 11b)/(5c + 11d) = (5a - 11b)/(5c - 11d)`
If `(5x + 7y)/(5u + 7v) = (5x - 7y)/(5u - 7v)`, show that `x/y = u/v`
If (4a + 5b) (4c – 5d) = (4a – 5d) (4c + 5d), prove that a, b, c, d are in proporton.
If (11a² + 13b²) (11c² – 13d²) = (11a² – 13b²)(11c² + 13d²), prove that a : b :: c : d.
If (a + 3b + 2c + 6d) (a – 3b – 2c + 6d) = (a + 3b – 2c – 6d) (a – 3b + 2c – 6d), prove that a : b :: c : d.
Find x from the following equations : `(sqrt(2 - x) + sqrt(2 + x))/(sqrt(2 - x) - sqrt(2 + x)` = 3