Advertisements
Advertisements
प्रश्न
Find x from the following equations : `(sqrt(2 - x) + sqrt(2 + x))/(sqrt(2 - x) - sqrt(2 + x)` = 3
उत्तर
`(sqrt(2 - x) + sqrt(2 + x))/(sqrt(2 - x) - sqrt(2 + x)` = 3
Applying componendo and dividendo,
`(sqrt(2 - x) + sqrt(2 + x) + sqrt(2 - x) - sqrt(2 + x))/(sqrt(2 - x) + sqrt(2 + x) - sqrt(2 - x) + sqrt(2 + x)) = (3 + 1)/(3 - 1)`
⇒ `(2sqrt(2 - x))/(2sqrt(2 + x)) = (4)/(2)`
⇒ `sqrt(2 - x)/(sqrt(2 + x)) = (2)/(1)`
Squaring both sides
`(2 - x)/(2 + x) = (4)/(1)`
⇒ 8 + 4x = 2 - x
4x + x = 2
⇒ 5x = –6
∴ x = `(-6)/(5)`.
APPEARS IN
संबंधित प्रश्न
If `x = (2ab)/(a + b)`, find the value of `(x + a)/(x - a) + (x +b)/(x - b)`.
Solve for x : `(1 - px)/(1 + px) = sqrt((1 + qx)/(1 - qx)`
If (ma + nb): b :: (mc + nd) : d, prove that a, b, c, d are in proportion.
If (11a² + 13b²) (11c² – 13d²) = (11a² – 13b²)(11c² + 13d²), prove that a : b :: c : d.
If x = `(8ab)/"a + b"` find the value of `(x + 4a)/(x - 4a) + (x + 4b)/(x - 4b)`
Find x from the following equations : `(3x + sqrt(9x^2 - 5))/(3x - sqrt(9x^2 - 5)) = (5)/(1)`
If x = `(sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1 - sqrt(a - 1)`, using properties of proportion, show that x2 – 2ax + 1 = 0
Give `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` Using componendo and dividendo find x : y.
If x = `"pab"/(a + b)`, provee that `(x + pa)/(x - pa) - (x + pb)/(x - pb) = (2(a^2 - b^2))/(ab)`
If `(x^2 - 1)/(x^2 + 1) = 3/5`, the value of x is ______.