Advertisements
Advertisements
प्रश्न
Find x from the following equations : `(sqrt(x + 4) + sqrt(x - 10))/(sqrt(x + 4) - sqrt(x - 10)) = (5)/(2)`
उत्तर
`(sqrt(x + 4) + sqrt(x - 10))/(sqrt(x + 4) - sqrt(x - 10)) = (5)/(2)`
Applying componendo and dividendo,
`(sqrt(x + 4) + sqrt(x - 10) + sqrt(x + 4) - sqrt(x - 10))/(sqrt(x + 4) + sqrt(x - 10) - sqrt(x + 4) + sqrt(x - 10)) = (5 + 2)/(5 - 2)`
⇒ `(2sqrt(x + 4))/(2sqrt(x - 10)) = (7)/(3)`
⇒ `(sqrt(x + 4))/(sqrt(x - 10)) = (7)/(3)`
Squaring both sides,
`(x + 4)/(x - 10) = (49)/(9)`
⇒ 49x – 490 = 9x + 36
⇒ 49x – 9x = 36 + 490x
⇒ 40x = 526
∴ x = `(526)/(40)`
= `(263)/(20)`.
APPEARS IN
संबंधित प्रश्न
If (7a + 8b)(7c – 8d) = (7a – 8b)(7c + 8d); prove that a : b = c : d.
Using the properties of proportion solve for x given `(x^4 + 1)/(2x^2) = 17/8`
If `(x^3 + 3xy^2)/(3x^2y + y^3) = (m^3 + 3mn^2)/(3m^2n + n^3)`, show that nx = my.
If a : b : : c : d, then prove that
(ax+ by): (cx + dy)=(ax - by) : (cx - dy)
Find the value of
`(x + sqrt(3))/(x - sqrt(3)) + (x + sqrt(2))/(x - sqrt(2)), if x = (2sqrt(6))/(sqrt(3) + sqrt(2)`.
If (4a + 5b) (4c – 5d) = (4a – 5d) (4c + 5d), prove that a, b, c, d are in proporton.
Using Componendo and Dividendo solve for x:
`(sqrt(2x + 2) + sqrt(2x - 1))/(sqrt(2x + 2) - sqrt(2x - 1))` = 3
`(x + y)/z = (y + z)/x = (z + x)/y` is equal to ______.
If (a + b) : (a – b) = 13 : 3 ; a : b is ______.
If x = y, the value of (3x + y) : (5x – 3y) is ______.