Advertisements
Advertisements
प्रश्न
Find x from the following equations : `(sqrt(x + 4) + sqrt(x - 10))/(sqrt(x + 4) - sqrt(x - 10)) = (5)/(2)`
उत्तर
`(sqrt(x + 4) + sqrt(x - 10))/(sqrt(x + 4) - sqrt(x - 10)) = (5)/(2)`
Applying componendo and dividendo,
`(sqrt(x + 4) + sqrt(x - 10) + sqrt(x + 4) - sqrt(x - 10))/(sqrt(x + 4) + sqrt(x - 10) - sqrt(x + 4) + sqrt(x - 10)) = (5 + 2)/(5 - 2)`
⇒ `(2sqrt(x + 4))/(2sqrt(x - 10)) = (7)/(3)`
⇒ `(sqrt(x + 4))/(sqrt(x - 10)) = (7)/(3)`
Squaring both sides,
`(x + 4)/(x - 10) = (49)/(9)`
⇒ 49x – 490 = 9x + 36
⇒ 49x – 9x = 36 + 490x
⇒ 40x = 526
∴ x = `(526)/(40)`
= `(263)/(20)`.
APPEARS IN
संबंधित प्रश्न
if x = `(sqrt(a + 1) + sqrt(a-1))/(sqrt(a + 1) - sqrt(a - 1))` using properties of proportion show that `x^2 - 2ax + 1 = 0`
If `(x^3 + 3xy^2)/(3x^2y + y^3) = (m^3 + 3mn^2)/(3m^2n + n^3)`, show that nx = my.
If a : b : : c : d, then prove that
(ax+ by): (cx + dy)=(ax - by) : (cx - dy)
If a : b =c : d, then prove that `("a"^2 + "c"^2)/("b"^2 + "d"^2) = ("ac")/("bc")`
If p, q, r ands are In continued proportion, then prove that (p3+q3+r3) ( q3+r3+s3) : : P : s
If `(8a - 5b)/(8c - 5a) = (8a + 5b)/(8c + 5d)`, prove that `a/b = c/d`
Find x from the following equations : `(3x + sqrt(9x^2 - 5))/(3x - sqrt(9x^2 - 5)) = (5)/(1)`
If x = `(2mab)/(a + b)`, find the value of `(x + ma)/(x - ma) + (x + mb)/(x - mb)`
If `x/(a + b - c) = y/(b + c - a) = z/(c + a - b) = 5` and a + b + c = 7; the value of x + y + z is ______.
If x = y, the value of (3x + y) : (5x – 3y) is ______.