Advertisements
Advertisements
प्रश्न
Find x from the following equations : `(sqrt(1 + x) + sqrt(1 - x))/(sqrt(1 + x) - sqrt(1 - x)) = a/b`
उत्तर
`(sqrt(1 + x) + sqrt(1 - x))/(sqrt(1 + x) - sqrt(1 - x)) = a/b`
Applying componendo and dividendo,
`(sqrt(1 + x) + sqrt(1 - x) + sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x) - sqrt(1 + x) + sqrt(1 - x)) = (a + b)/(a - b)`
⇒ `(2sqrt(1 + x))/(2sqrt(1 - x)) = (a + b)/(a - b)`
⇒ `(sqrt(1 + x))/(sqrt(1 - x)) = (a + b)/(a - b)`
Squaring both sides,
`(1 + x)/(1 - x) = (a + b)^2/(a - b)^2`
Again applying componendo and dividendo,
`(1 + x + 1 - x)/(1 + x - 1 + x)`
= `((a + b)^2 + (a - b)^2)/((a + b)^2 - (a - b)^2)`
⇒ `(2)/(2x) = (2(a^2 + b^2))/(4ab)`
⇒ `(1)/x = (a^2 + b^2)/(2ab)`
∴ x = `(2ab)/(a^2 + b^2)`.
APPEARS IN
संबंधित प्रश्न
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^3 + 1)`
If `(x^3 + 3xy^2)/(3x^2y + y^3) = (m^3 + 3mn^2)/(3m^2n + n^3)`, show that nx = my.
If `x = (2ab)/(a + b)`, find the value of `(x + a)/(x - a) + (x +b)/(x - b)`.
If `(8a - 5b)/(8c - 5d) = (8a + 5b)/(8c + 5d), "prove that" a/b = c/d.`
If `(3x + 5y)/(3x - 5y) = (7)/(3)`, find x : y.
If a : b : : c : d, prove that (la + mb) : (lc + mb) :: (la – mb) : (lc – mb)
If x = `(2a + b)/(a + b)` find the value of `(x + a)/(x - a) + (x + b)/(x - b)`
Give `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` Using componendo and dividendo find x : y.
Using Componendo and Dividendo solve for x:
`(sqrt(2x + 2) + sqrt(2x - 1))/(sqrt(2x + 2) - sqrt(2x - 1))` = 3
If (a + b) : (a – b) = 13 : 3 ; a : b is ______.