Advertisements
Advertisements
प्रश्न
If (a + b) : (a – b) = 13 : 3 ; a : b is ______.
विकल्प
`13/3`
`3/13`
`5/8`
`8/5`
उत्तर
If (a + b) : (a – b) = 13 : 3 ; a : b is `underlinebb(8/5)`.
Explanation:
Given `(a + b)/(a - b) = 13/3`
Applying componendo and dividendo,
`(a + b + a - b)/(a + b - (a - b)) = (13 + 3)/(13 - 3)`
`\implies (2a)/(a + b - a + b) = 16/10`
`\implies (2a)/(2b) = 8/5`
`\implies a/b = 8/5`
संबंधित प्रश्न
if x = `(sqrt(a + 1) + sqrt(a-1))/(sqrt(a + 1) - sqrt(a - 1))` using properties of proportion show that `x^2 - 2ax + 1 = 0`
Given, `a/b = c/d`, prove that: `(3a - 5b)/(3a + 5b) = (3c - 5d)/(3c + 5d)`
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `(x^3 + y^3)/(x^3 - y^3)`
If a : b : : c : d, then prove that
`(4"a" + 9"b")/(4"c" + 9"d") = (4"a" - 9"b")/(4"c" - 9"d")`
If a : b =c : d, then prove that `("a"^2 + "c"^2)/("b"^2 + "d"^2) = ("ac")/("bc")`
If `(8a - 5b)/(8c - 5d) = (8a + 5b)/(8c + 5d), "prove that" a/b = c/d.`
If (a + 3b + 2c + 6d) (a – 3b – 2c + 6d) = (a + 3b – 2c – 6d) (a – 3b + 2c – 6d), prove that a : b :: c : d.
If x = `(root(3)(a + 1) + root(3)(a - 1))/(root(3)(a + 1) - root(3)(a - 1)`,prove that :
x³ – 3ax² + 3x – a = 0
If `(by + cz)/(b^2 + c^2) = (cz + ax)/(c^2 + a^2) = (ax + by)/(a^2 + b^2)`, prove that each of these ratio is equal to `x/a = y/b = z/c`
`(x + y)/z = (y + z)/x = (z + x)/y` is equal to ______.