Advertisements
Advertisements
प्रश्न
If `(by + cz)/(b^2 + c^2) = (cz + ax)/(c^2 + a^2) = (ax + by)/(a^2 + b^2)`, prove that each of these ratio is equal to `x/a = y/b = z/c`
उत्तर
`(by + cz)/(b^2 + c^2) = (cz + ax)/(c^2 + a^2) = (ax + by)/(a^2 + b^2)`
= `(2(ax + by + cz))/(2(a^2 + b^2 + c^2)`
= `(ax + by + cz)/(a^2 + b^2 + c^2)` ...(Adding)
Now `(by + cz)/(b^2+ c^2) = (ax + by + cz)/(a^2 + b^2 + c^2)`
⇒ `(by + cz)/(ax + by + cz) = (b^2 + c^2)/(a^2 + b^2 + c^2)` ...(By alternendo)
⇒ `(by+ cz - ax- by- cz)/(ax + by + cz)`
= `(b^2 + c^2 - a^2 - b^2 - c^2)/(a^2 + b^2 + c^2)`
⇒ `(-ax)/(ax + by + cz) = (-a)/(a^2 + b^2 + c^2)`
⇒ `x/(ax + by + cz) = a/(a^2 + b^2 + c^2)`
⇒ `x/a = (ax + by + cz)/(a^2 + b^2 + c^2)` ...(i)
Similarly we can prove that
`y/b = "ax + by + cz"/(a^2 + b^2 + c^2)` ...(ii)
and `z/c = "ax + by + cz"/(a^2 + b^2 + c^2)` ...(iii)
from (i), (ii) and (iii)
Hence `x/a = y/b = z/c`.
APPEARS IN
संबंधित प्रश्न
If a : b = c : d, prove that: 5a + 7b : 5a – 7b = 5c + 7d : 5c – 7d.
If (a + b + c + d) (a – b – c + d) = (a + b – c – d) (a – b + c – d), prove that a : b = c : d.
If `(x^3 + 3xy^2)/(3x^2y + y^3) = (m^3 + 3mn^2)/(3m^2n + n^3)`, show that nx = my.
If 7x – 15y = 4x + y, find the value of x : y. Hence, use componendo and dividend to find the values of:
`(3x^2 + 2y^2)/(3x^2 - 2y^2)`
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `(x^3 + y^3)/(x^3 - y^3)`
Using componendo and dividendo, find the value of x:
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)) = 9`
If `(8a - 5b)/(8c - 5a) = (8a + 5b)/(8c + 5d)`, prove that `a/b = c/d`
Given that `(a^3 + 3ab^2)/(b^3 + 3a^2b) = (63)/(62)`. Using componendo and dividendo find a: b.
Using Componendo and Dividendo solve for x:
`(sqrt(2x + 2) + sqrt(2x - 1))/(sqrt(2x + 2) - sqrt(2x - 1))` = 3
If (m + n) : (n – m) = 5 : 2 ; m : n is ______.