Advertisements
Advertisements
प्रश्न
Using componendo and dividendo, find the value of x:
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)) = 9`
उत्तर
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)) = 9/1`
Applying componendo and dividend, we have
`(sqrt(3x + 4) + sqrt(3x - 5) + sqrt(3x + 4) - sqrt(3x - 5))/(sqrt(3x + 4) + sqrt(3x - 5) - sqrt(3x + 4) + sqrt(3x - 5)) = (9 + 1)/(9 - 1)`
`=> (2sqrt(3x + 4))/(2sqrt(3x - 5)) = 5/4`
Squaring both sides, we have
`(3x + 4)/(3x - 5) = 25/16`
`=>` 16(3x + 4) = 25(3x – 5)
`=>` 48x – 64 = 75x – 125
`=>` 75x – 48x = 64 + 125
`=>` 27x = 189
`=> x = 189/27`
`=>` x = 7
APPEARS IN
संबंधित प्रश्न
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3+ 27y)/(9y^2 + 27)`. Using componendo and dividendo find x : y.
if `(x^2 + y^2)/(x^2 - y^2) = 17/8`then find the value of :
1) x : y
2) `(x^3 + y^3)/(x^3 - y^3)`
If a : b = c : d, prove that: 5a + 7b : 5a – 7b = 5c + 7d : 5c – 7d.
If `x = (6ab)/(a + b)`, find the value of `(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b)`.
If y = `(sqrt(a + 3b) + sqrt(a - 3b))/(sqrt(a + 3b) - sqrt(a - 3b))`, show that 3by2 - 2ay + 3b = 0.
If y = `((p + 1)^(1/3) + (p - 1)^(1/3))/((p + 1)^(1/3) - (p - 1)^(1/3)` find that y3 - 3py2 + 3y - p = 0.
If a : b : : c : d, prove that `(2a +5b)/(2a - 5b) = (2c + 5d)/(2c - 5d)`
If (a + 3b + 2c + 6d) (a – 3b – 2c + 6d) = (a + 3b – 2c – 6d) (a – 3b + 2c – 6d), prove that a : b :: c : d.
Given `x = (sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2)`. Use componendo and dividendo to prove that: `b^2 = (2a^2x)/(x^2 + 1)`
If `(x^2 - 4)/(x^2 + 4) = 3/5`, the value of x is ______.