Advertisements
Advertisements
प्रश्न
If `x = (sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1) - sqrt(a - 1))`, using properties of proportion show that: x2 – 2ax + 1 = 0.
उत्तर
Given that `x = (sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1) - sqrt(a- 1))`
By applying componendo-dividendo,
`=> (x + 1)/(x - 1) = ((sqrt(a + 1) + sqrt(a - 1)) + (sqrt(a + 1) + sqrt(a - 1)))/((sqrt(a + 1) + sqrt(a - 1)) - (sqrt(a + 1) - sqrt(a - 1)))`
`=> (x + 1)/(x - 1) = (2sqrt(a + 1))/(2sqrt(a - 1))`
`=> (x + 1)/(x - 1) = sqrt(a + 1)/sqrt(a -1 )`
Squaring both the sides of the equation, we have,
`=> ((x + 1)/(x - 1))^2 = (a + 1)/(a - 1)`
`=>` (x + 1)2(a – 1) = (x – 1)2(a + 1)
`=>` (x2 + 2x + 1)(a – 1) = (x2 – 2x + 1)(a + 1)
`=>` a(x2 + 2x + 1) – (x2 + 2x + 1) = a(x2 – 2x + 1) + (x2 – 2x + 1)
`=>` 4ax = 2x2 + 2
`=>` 2ax = x2 + 1
`=>` x2 – 2ax + 1 = 0
APPEARS IN
संबंधित प्रश्न
if `(x^2 + y^2)/(x^2 - y^2) = 17/8`then find the value of :
1) x : y
2) `(x^3 + y^3)/(x^3 - y^3)`
If (a + b + c + d) (a – b – c + d) = (a + b – c – d) (a – b + c – d), prove that a : b = c : d.
If `(x^3 + 3xy^2)/(3x^2y + y^3) = (m^3 + 3mn^2)/(3m^2n + n^3)`, show that nx = my.
If `x = (2ab)/(a + b)`, find the value of `(x + a)/(x - a) + (x +b)/(x - b)`.
If `(8a - 5b)/(8c - 5d) = (8a + 5b)/(8c + 5d), "prove that" a/b = c/d.`
If `a/b = c/d,` show that (9a + 13b) (9c - 13d) = (9c + 13b) (9a - 13d).
If (4a + 5b) (4c – 5d) = (4a – 5d) (4c + 5d), prove that a, b, c, d are in proporton.
If x = `(8ab)/"a + b"` find the value of `(x + 4a)/(x - 4a) + (x + 4b)/(x - 4b)`
Find x from the following equations : `(sqrt(x + 4) + sqrt(x - 10))/(sqrt(x + 4) - sqrt(x - 10)) = (5)/(2)`
If x = `(root(3)(a + 1) + root(3)(a - 1))/(root(3)(a + 1) - root(3)(a - 1)`,prove that :
x³ – 3ax² + 3x – a = 0