Advertisements
Advertisements
प्रश्न
If `x = (sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1) - sqrt(a - 1))`, using properties of proportion show that: x2 – 2ax + 1 = 0.
उत्तर
Given that `x = (sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1) - sqrt(a- 1))`
By applying componendo-dividendo,
`=> (x + 1)/(x - 1) = ((sqrt(a + 1) + sqrt(a - 1)) + (sqrt(a + 1) + sqrt(a - 1)))/((sqrt(a + 1) + sqrt(a - 1)) - (sqrt(a + 1) - sqrt(a - 1)))`
`=> (x + 1)/(x - 1) = (2sqrt(a + 1))/(2sqrt(a - 1))`
`=> (x + 1)/(x - 1) = sqrt(a + 1)/sqrt(a -1 )`
Squaring both the sides of the equation, we have,
`=> ((x + 1)/(x - 1))^2 = (a + 1)/(a - 1)`
`=>` (x + 1)2(a – 1) = (x – 1)2(a + 1)
`=>` (x2 + 2x + 1)(a – 1) = (x2 – 2x + 1)(a + 1)
`=>` a(x2 + 2x + 1) – (x2 + 2x + 1) = a(x2 – 2x + 1) + (x2 – 2x + 1)
`=>` 4ax = 2x2 + 2
`=>` 2ax = x2 + 1
`=>` x2 – 2ax + 1 = 0
APPEARS IN
संबंधित प्रश्न
If `(x^3 + 3xy^2)/(3x^2y + y^3) = (m^3 + 3mn^2)/(3m^2n + n^3)`, show that nx = my.
Using componendo and dividendo, find the value of x:
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)) = 9`
If `(7"a" + 12"b")/(7"c" + 12"d")` then prove that `"a"/"b"="c"/"d"`
If a : b :: c : d :: e : f, then prove that `("ae" + "bf")/("ae" - "bf")` = `("ce" + "df")/("ce" - "df")`
Given that `(a^3 + 3ab^2)/(b^2 + 3a^2b) = (63)/(62)`.
Using Componendo and Dividendo find a : b.
If a : b : : c : d, prove that (2a + 3b)(2c – 3d) = (2a – 3b)(2c + 3d)
If `(5x + 7y)/(5u + 7v) = (5x - 7y)/(5u - 7v)`, show that `x/y = u/v`
If (4a + 5b) (4c – 5d) = (4a – 5d) (4c + 5d), prove that a, b, c, d are in proporton.
If x = `(sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1 - sqrt(a - 1)`, using properties of proportion, show that x2 – 2ax + 1 = 0
If x = y, the value of (3x + y) : (5x – 3y) is ______.