Advertisements
Advertisements
प्रश्न
If x = `(sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1 - sqrt(a - 1)`, using properties of proportion, show that x2 – 2ax + 1 = 0
उत्तर
We have x = `(sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1 - sqrt(a - 1)`
⇒ `(x + 1)/(x - 1) = (2sqrt(a + 1))/(2sqrt(a - 1)`
(Applying componendo and dividendo)
⇒ `((x + 1)^2)/((x - 1)^2) = (a + 1)/(a - 1)`
⇒ `((x + 1)^2 + (x - 1)^2)/((x + 1)^2 - (x - 1)^2) = (2a)/(2)`
(Again applying componendo and dividendo)
⇒ `(x^2 + 1 + 2x + x^2 + 1 - 2x)/(x^2 + 1 + 2x - x^2 - 1 + 2x)` = a
⇒ `(2x^2 + 2)/(4x)` = a
⇒ `(2(x^2 + 1))/(4x)` = a
⇒ `((x^2 + 1))/(2x)` = a
⇒ 2ax = x2 + 1
⇒ x2 – 2ax + 1 = 0
Proved.
APPEARS IN
संबंधित प्रश्न
If `(7m + 2n)/(7m - 2n) = 5/3`, use properties of proportion to find:
- m : n
- `(m^2 + n^2)/(m^2 - n^2)`
If (7a + 8b)(7c – 8d) = (7a – 8b)(7c + 8d); prove that a : b = c : d.
If `x = (sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1) - sqrt(a - 1))`, using properties of proportion show that: x2 – 2ax + 1 = 0.
If a : b : : c : d, then prove that
`(4"a" + 9"b")/(4"c" + 9"d") = (4"a" - 9"b")/(4"c" - 9"d")`
If `(8a - 5b)/(8c - 5d) = (8a + 5b)/(8c + 5d), "prove that" a/b = c/d.`
If y = `((p + 1)^(1/3) + (p - 1)^(1/3))/((p + 1)^(1/3) - (p - 1)^(1/3)` find that y3 - 3py2 + 3y - p = 0.
Find the value of
`(x + sqrt(3))/(x - sqrt(3)) + (x + sqrt(2))/(x - sqrt(2)), if x = (2sqrt(6))/(sqrt(3) + sqrt(2)`.
If (11a² + 13b²) (11c² – 13d²) = (11a² – 13b²)(11c² + 13d²), prove that a : b :: c : d.
Solve for `x : 16((a - x)/(a + x))^3 = (a + x)/(a - x)`
If `(x^2 - 4)/(x^2 + 4) = 3/5`, the value of x is ______.