Advertisements
Advertisements
प्रश्न
Given `x = (sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2)`. Use componendo and dividendo to prove that: `b^2 = (2a^2x)/(x^2 + 1)`
उत्तर
Given: `x/(1) = (sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2)`
Applying componendo and dividendo both sides, we have
`(x + 1)/(x - 1) = (sqrt(a^2 + b^2) + sqrt(a^2 - b^2) + sqrt(a^2 + b^2) - sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) + sqrt(a^2 - b^2) - sqrt(a^2 + b^2) + sqrt(a^2 - b^2)`
`\implies (x + 1)/(x - 1) = (2sqrt(a^2 + b^2))/(2sqrt(a^2 + b^2)`
`\implies (x + 1)/(x - 1) = (sqrt(a^2 + b^2))/(sqrt(a^2 + b^2)`
Squaring both sides, we have
`\implies (x + 1)^2/(x - 1)^2 = (a^2 + b^2)/(a^2 - b^2)`
`\implies (x^2 + 1 + 2x)/(x^2 + 1 - 2x) = (a^2 + b^2)/(a^2 - b^2)`
Applying componendo and dividendo both sides, we get
`\implies (x^2 + 1 + 2x + x^2 + 1 - 2x)/(x^2 + 1 + 2x - x^2 - 1 + 2x) = (a^2 + b^2 + a^2 - b^2)/(a^2 + b^2 - a^2 + b^2)`
`\implies (2x^2 + 2)/(4x) = (2a^2)/(2b^2)`
`\implies (x^2 + 1)/(2x) = a^2/b^2`
`\implies b^2 = (2a^2x)/(x^2 + 1)`
APPEARS IN
संबंधित प्रश्न
If a : b = c : d, prove that: (6a + 7b)(3c – 4d) = (6c + 7d)(3a – 4b).
If `(a - 2b - 3c + 4d)/(a + 2b - 3c - 4d) = (a - 2b + 3c - 4d)/(a + 2b + 3c + 4d)`, show that: 2ad = 3bc.
Using the properties of proportion solve for x given `(x^4 + 1)/(2x^2) = 17/8`
If a : b : : c : d, then prove that
(ax+ by): (cx + dy)=(ax - by) : (cx - dy)
Using componendo and idendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)` = 9
If a : b : : c : d, prove that (2a + 3b)(2c – 3d) = (2a – 3b)(2c + 3d)
If (11a² + 13b²) (11c² – 13d²) = (11a² – 13b²)(11c² + 13d²), prove that a : b :: c : d.
Solve x : `(sqrt(36x + 1) + 6sqrt(x))/(sqrt(36x + 1) -6sqrt(x))` = 9
Solve `(1 + x + x^2)/(1 - x + x^2) = (62(1 +x))/(63(1 + x)`
If `(x^2 - 1)/(x^2 + 1) = 3/5`, the value of x is ______.