Advertisements
Advertisements
प्रश्न
Given that `(a^3 + 3ab^2)/(b^3 + 3a^2b) = (63)/(62)`. Using componendo and dividendo find a: b.
उत्तर
Given that `(a^3 + 3ab^2)/(b^3 + 3a^2b) = (63)/(62)`
By componendo and dividendo
`(a^3 + 3ab^2 + b^3 + 3a^2b)/(a^3 + 3ab^2 - b^3 - 3a^2b) = (63 + 62)/(63 - 62) = (125)/(1)`
⇒ `(a + b)^3/(a b)^3 - (5/1)^3`
⇒ `(a + b)/(a - b)` = 5
⇒ a + b = 5a – 5b
⇒ 5a – a – 5b – b = 0
⇒ 4a – 6b = 0
⇒ 4a = 6b
⇒ `a/b = (6)/(4)`
⇒ `a/b = (3)/(2)`
a : b = 3 : 2.
APPEARS IN
संबंधित प्रश्न
If a : b = c : d, prove that: xa + yb : xc + yd = b : d.
If `x = (6ab)/(a + b)`, find the value of `(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b)`.
If (4a + 9b)(4c – 9d) = (4a – 9b)(4c + 9d), prove that: a : b = c : d.
If 7x – 15y = 4x + y, find the value of x : y. Hence, use componendo and dividend to find the values of:
`(3x^2 + 2y^2)/(3x^2 - 2y^2)`
If `(7"a" + 12"b")/(7"c" + 12"d")` then prove that `"a"/"b"="c"/"d"`
If `(3x + 5y)/(3x - 5y) = (7)/(3)`, find x : y.
If a : b : : c : d, prove that (la + mb) : (lc + mb) :: (la – mb) : (lc – mb)
If `(5x + 7y)/(5u + 7v) = (5x - 7y)/(5u - 7v)`, show that `x/y = u/v`
Solve for `x : 16((a - x)/(a + x))^3 = (a + x)/(a - x)`
Find x from the equation `(a+ x + sqrt(a^2 x^2))/(a + x - sqrt(a^2 - x^2)) = b/x`