Advertisements
Advertisements
प्रश्न
Given that `(a^3 + 3ab^2)/(b^3 + 3a^2b) = (63)/(62)`. Using componendo and dividendo find a: b.
उत्तर
Given that `(a^3 + 3ab^2)/(b^3 + 3a^2b) = (63)/(62)`
By componendo and dividendo
`(a^3 + 3ab^2 + b^3 + 3a^2b)/(a^3 + 3ab^2 - b^3 - 3a^2b) = (63 + 62)/(63 - 62) = (125)/(1)`
⇒ `(a + b)^3/(a b)^3 - (5/1)^3`
⇒ `(a + b)/(a - b)` = 5
⇒ a + b = 5a – 5b
⇒ 5a – a – 5b – b = 0
⇒ 4a – 6b = 0
⇒ 4a = 6b
⇒ `a/b = (6)/(4)`
⇒ `a/b = (3)/(2)`
a : b = 3 : 2.
APPEARS IN
संबंधित प्रश्न
If (7a + 8b)(7c – 8d) = (7a – 8b)(7c + 8d); prove that a : b = c : d.
If `a = (4sqrt6)/(sqrt2 + sqrt3)`, find the value of `(a + 2sqrt2)/(a - 2sqrt2) + (a + 2sqrt3)/(a - 2sqrt3)`.
If `x = (sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1) - sqrt(a - 1))`, using properties of proportion show that: x2 – 2ax + 1 = 0.
If a : b = c : d , then prove that `("a"^2 + "ab" +
"b"^2)/("a"^2 - "ab" + "b"^2) = ("c"^2 + "cd"+ "d"^2)/("c"^2 - "cd" + "d"^2)`
Show, that a, b, c, d are in proportion if:
(6a + 7b) : (6c + 7d) : : (6a - 7b) : (6c - 7d)
Solve for x : `(1 - px)/(1 + px) = sqrt((1 + qx)/(1 - qx)`
Find the value of
`(x + sqrt(3))/(x - sqrt(3)) + (x + sqrt(2))/(x - sqrt(2)), if x = (2sqrt(6))/(sqrt(3) + sqrt(2)`.
If a : b : : c : d, prove that (2a + 3b)(2c – 3d) = (2a – 3b)(2c + 3d)
Find x from the following equations : `(sqrt(2 - x) + sqrt(2 + x))/(sqrt(2 - x) - sqrt(2 + x)` = 3
Find x from the following equations : `(sqrt(a + x) + sqrt(a - x))/(sqrt(a + x) - sqrt(a - x)) = c/d`