Advertisements
Advertisements
प्रश्न
If `a = (4sqrt6)/(sqrt2 + sqrt3)`, find the value of `(a + 2sqrt2)/(a - 2sqrt2) + (a + 2sqrt3)/(a - 2sqrt3)`.
उत्तर
`a = (4sqrt6)/(sqrt2 + sqrt3)`
`a/(2sqrt2) = (2sqrt3)/(sqrt2 + sqrt3)`
Applying componendo and dividendo,
`(a + 2sqrt2)/(a - 2sqrt2) = (2sqrt3 + sqrt2 + sqrt3)/(2sqrt3 - sqrt2 - sqrt3)`
`(a + 2sqrt2)/(a - 2sqrt2) = (3sqrt3 + sqrt2)/(sqrt3 - sqrt2)` ...(1)
`a/(2sqrt3) = (2sqrt2)/(sqrt2 + sqrt3)`
Applying componendo and dividendo,
`(a + 2sqrt3)/(a - 2sqrt3) = (2sqrt2 + sqrt2 + sqrt3)/(2sqrt2 - sqrt2 - sqrt3)`
`(a + 2sqrt3)/(a - 2sqrt3) = (3sqrt2 + sqrt3)/(sqrt2 - sqrt3)` ...(2)
From (1) and (2),
`(a + 2sqrt2)/(a - 2sqrt2) + (a + 2sqrt3)/(a - 2sqrt3) = (3sqrt3 + sqrt2)/(sqrt3 - sqrt2) + (3sqrt2 + sqrt3)/(sqrt2 - sqrt3)`
`(a + 2sqrt2)/(a - 2sqrt2) + (a + 2sqrt3)/(a - 2sqrt3) = (3sqrt2 + sqrt3 - 3sqrt3 - sqrt2)/(sqrt2 - sqrt3)`
`(a + 2sqrt2)/(a - 2sqrt2) +(a + 2sqrt3)/(a - 2sqrt3) = (2sqrt2 - 2sqrt3)/(sqrt2 - sqrt3) = 2`
APPEARS IN
संबंधित प्रश्न
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^3 + 1)`
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `x/y`
If (7m +8n)(7p - 8q) = (7m - 8n)(7p + 8q), then prove that m: n = p: q
If a : b =c : d, then prove that `("a"^2 + "c"^2)/("b"^2 + "d"^2) = ("ac")/("bc")`
If x = `(root (3)("m + 1") + root (3)("m - 1"))/(root (3)("m + 1") + root (3)("m - 1")` then prove that x3 - 3mx2 + 3x = m
If `a/b = c/d,` show that (9a + 13b) (9c - 13d) = (9c + 13b) (9a - 13d).
if `(3a + 4b)/(3c + 4d) = (3a - 4b)/(3c - 4d)` Prove that `a/b = c/d`.
Find x from the following equations : `(3x + sqrt(9x^2 - 5))/(3x - sqrt(9x^2 - 5)) = (5)/(1)`
Solve for `x : 16((a - x)/(a + x))^3 = (a + x)/(a - x)`
If `x/(a + b - c) = y/(b + c - a) = z/(c + a - b) = 5` and a + b + c = 7; the value of x + y + z is ______.