Advertisements
Advertisements
प्रश्न
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `x/y`
उत्तर
Given, `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`
`(x^2 + y^2)/(x^2 - y^2) = 17/8`
Applying componendo and dividendo,
`(x^2 + y^2 + x^2 - y^2)/(x^2 + y^2 - x^2 + y^2) = (17 + 8)/(17 - 8)`
`(2x^2)/(2y^2) = 25/9`
`x^2/y^2 = 25/9`
`x/y = 5/3 = 1 2/3`
APPEARS IN
संबंधित प्रश्न
if `(x^2 + y^2)/(x^2 - y^2) = 17/8`then find the value of :
1) x : y
2) `(x^3 + y^3)/(x^3 - y^3)`
If (a + b + c + d) (a – b – c + d) = (a + b – c – d) (a – b + c – d), prove that a : b = c : d.
Using the properties of proportion solve for x given `(x^4 + 1)/(2x^2) = 17/8`
If `x = (sqrt(m + n) + sqrt(m - n))/(sqrt(m + n) - sqrt(m - n))`, express n in terms of x and m.
If y = `((p + 1)^(1/3) + (p - 1)^(1/3))/((p + 1)^(1/3) - (p - 1)^(1/3)` find that y3 - 3py2 + 3y - p = 0.
Given : x = `(sqrt(a^2 + b^2)+sqrt(a^2 - b^2))/(sqrt(a^2 + b^2)-sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^2 + 1)`.
If a : b = c : d, show that (2a - 7b) (2c + 7d) = (2c - 7d) (2a + 7b).
If x = `(8ab)/"a + b"` find the value of `(x + 4a)/(x - 4a) + (x + 4b)/(x - 4b)`
If x = `(4sqrt(6))/(sqrt(2) + sqrt(3)` find the value of `(x + 2sqrt(2))/(x - 2sqrt(2)) + (x + 2sqrt(3))/(x - 2sqrt(3)`
If (3x² + 2y²) : (3x² – 2y²) = 11 : 9, find the value of `(3x^4 + 5y^4)/(3x^4 - 5y^4)`