Advertisements
Advertisements
प्रश्न
If x = `(4sqrt(6))/(sqrt(2) + sqrt(3)` find the value of `(x + 2sqrt(2))/(x - 2sqrt(2)) + (x + 2sqrt(3))/(x - 2sqrt(3)`
उत्तर
x = `(4sqrt(6))/(sqrt(2) + sqrt(3)`
⇒ `(4sqrt(2) xx sqrt(3))/(sqrt(2) + sqrt(3)`
`x/(2sqrt(2)) = (2sqrt(3))/(sqrt(2) + sqrt(3)`
Applying componendo and dividendo,
`(x + 2sqrt(2))/(x - 2sqrt(2))`
= `(2sqrt(3) + sqrt(2) + sqrt(3))/(2sqrt(3) - sqrt(2) - sqrt(3))`
= `(3sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)` ...(i)
Again `x/(2sqrt(3)) = (2sqrt(2))/(sqrt(2) + sqrt(3)`
Applying componendo and dividendo,
`(x + 2sqrt(3))/(x - 2sqrt(3))`
= `(2sqrt(2) + sqrt(2) + sqrt(3))/(2sqrt(2) - sqrt(2) - sqrt(3))`
= `(3sqrt(2) + sqrt(3))/(sqrt(2) - sqrt(3)` ...(ii)
Adding (i) and (ii)
`(x + 2sqrt(2))/(x - 2sqrt(2)) + (x + 2sqrt(3))/(x - 2sqrt(3)`
= `(3sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) + (3sqrt(2) + sqrt(3))/(sqrt(2) - sqrt(3)`
= `(3sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) - (3sqrt(2) + sqrt(3))/(sqrt(3) - sqrt(2)`
= `(3sqrt(3) + sqrt(2) - 3sqrt(2) - sqrt(3))/(sqrt(3) - sqrt(2)`
= `(2sqrt(3) - 2sqrt(2))/(sqrt(3) - sqrt(2)`
= `(2(sqrt(3) - sqrt(2)))/(sqrt(3) - sqrt(2)`
= 2.
APPEARS IN
संबंधित प्रश्न
If `(7m + 2n)/(7m - 2n) = 5/3`, use properties of proportion to find:
- m : n
- `(m^2 + n^2)/(m^2 - n^2)`
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that b^2 = (2a^2x)/(x^2 + 1)
If a : b =c : d, then prove that `("a"^2 + "c"^2)/("b"^2 + "d"^2) = ("ac")/("bc")`
If `p/q = r/s`, prove that `(2p + 3q)/(2p - 3q) = (2r + 3s)/(2r - 3s)`.
If a : b : : c : d, prove that `(2a +5b)/(2a - 5b) = (2c + 5d)/(2c - 5d)`
If a : b : : c : d, prove that (la + mb) : (lc + mb) :: (la – mb) : (lc – mb)
If `(8a - 5b)/(8c - 5a) = (8a + 5b)/(8c + 5d)`, prove that `a/b = c/d`
If x = `(2a + b)/(a + b)` find the value of `(x + a)/(x - a) + (x + b)/(x - b)`
Solve `(1 + x + x^2)/(1 - x + x^2) = (62(1 +x))/(63(1 + x)`
If x = `"pab"/(a + b)`, provee that `(x + pa)/(x - pa) - (x + pb)/(x - pb) = (2(a^2 - b^2))/(ab)`