Advertisements
Advertisements
प्रश्न
If `p/q = r/s`, prove that `(2p + 3q)/(2p - 3q) = (2r + 3s)/(2r - 3s)`.
उत्तर
We have
`p/q = r/s` ...[Multiplying both side by 2 / 3]
`(2p)/(3q) = (2r)/(3s)` ...[By componendo and dividendo]
∴ `(2p + 3q)/(2p - 3q) = (2r + 3s)/(2r - 3s)`.
Hence proved.
APPEARS IN
संबंधित प्रश्न
if `(x^2 + y^2)/(x^2 - y^2) = 17/8`then find the value of :
1) x : y
2) `(x^3 + y^3)/(x^3 - y^3)`
If a : b = c : d, prove that: (6a + 7b)(3c – 4d) = (6c + 7d)(3a – 4b).
If `(a - 2b - 3c + 4d)/(a + 2b - 3c - 4d) = (a - 2b + 3c - 4d)/(a + 2b + 3c + 4d)`, show that: 2ad = 3bc.
If a : b :: c : d :: e : f, then prove that `("ae" + "bf")/("ae" - "bf")` = `("ce" + "df")/("ce" - "df")`
If y = `(sqrt(a + 3b) + sqrt(a - 3b))/(sqrt(a + 3b) - sqrt(a - 3b))`, show that 3by2 - 2ay + 3b = 0.
If x = `(4sqrt(6))/(sqrt(2) + sqrt(3)` find the value of `(x + 2sqrt(2))/(x - 2sqrt(2)) + (x + 2sqrt(3))/(x - 2sqrt(3)`
Find x from the following equations : `(3x + sqrt(9x^2 - 5))/(3x - sqrt(9x^2 - 5)) = (5)/(1)`
If x = `(sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1 - sqrt(a - 1)`, using properties of proportion, show that x2 – 2ax + 1 = 0
If `(x + y)/(ax + by) = (y + z)/(ay + bz) = (z + x)/(az + bx)`, prove that each of these ratio is equal to `(2)/(a + b)` unless x + y + z = 0
If `(x^2 - 4)/(x^2 + 4) = 3/5`, the value of x is ______.