Advertisements
Advertisements
प्रश्न
If `(a - 2b - 3c + 4d)/(a + 2b - 3c - 4d) = (a - 2b + 3c - 4d)/(a + 2b + 3c + 4d)`, show that: 2ad = 3bc.
उत्तर
`(a - 2b - 3c + 4d)/(a + 2b - 3c - 4d) = (a - 2b + 3c - 4d)/(a + 2b + 3c + 4d)`
Applying componendo and dividendo,
`\implies (a - 2b - 3c + 4d + a + 2b - 3c - 4d)/(a - 2b - 3c + 4d - a - 2b + 3c + 4d)= (a - 2b + 3c - 4d + a + 2b + 3c + 4d)/(a - 2b + 3c - 4d - a - 2b - 3c - 4d)`
`\implies (2a-6c)/(-4b+8d)=(2a+6c)/(-4b-8d)`
`\implies (2(a - 3c))/(-4(b - 2d)) = (2(a + 3c))/(4(b + 2d))`
`\implies (a - 3c)/(a + 3c) = (b - 2d)/(b + 2d)`
Applying componendo and dividendo,
`\implies (a - 3c + a + 3c)/(a - 3c - a - 3c) = (b - 2d + b + 2d)/(b - 2d - b - 2d)`
`\implies (2a)/(-6c) = (2b)/(-4d)`
`\implies` – 4da = – 6cb
`\implies` 2ad = 3bc
APPEARS IN
संबंधित प्रश्न
If `(7m + 2n)/(7m - 2n) = 5/3`, use properties of proportion to find:
- m : n
- `(m^2 + n^2)/(m^2 - n^2)`
If a : b = c : d, prove that: (6a + 7b)(3c – 4d) = (6c + 7d)(3a – 4b).
If (a + b + c + d) (a – b – c + d) = (a + b – c – d) (a – b + c – d), prove that a : b = c : d.
Find x, if `16((a - x)/(a + x))^3 = (a + x)/(a - x)`.
If y = `(sqrt(a + 3b) + sqrt(a - 3b))/(sqrt(a + 3b) - sqrt(a - 3b))`, show that 3by2 - 2ay + 3b = 0.
If (11a² + 13b²) (11c² – 13d²) = (11a² – 13b²)(11c² + 13d²), prove that a : b :: c : d.
If x = `(8ab)/"a + b"` find the value of `(x + 4a)/(x - 4a) + (x + 4b)/(x - 4b)`
Find x from the following equations : `(sqrt(2 - x) + sqrt(2 + x))/(sqrt(2 - x) - sqrt(2 + x)` = 3
Given that `(a^3 + 3ab^2)/(b^3 + 3a^2b) = (63)/(62)`. Using componendo and dividendo find a: b.
If x = `(2mab)/(a + b)`, find the value of `(x + ma)/(x - ma) + (x + mb)/(x - mb)`