Advertisements
Advertisements
Question
If `(a - 2b - 3c + 4d)/(a + 2b - 3c - 4d) = (a - 2b + 3c - 4d)/(a + 2b + 3c + 4d)`, show that: 2ad = 3bc.
Solution
`(a - 2b - 3c + 4d)/(a + 2b - 3c - 4d) = (a - 2b + 3c - 4d)/(a + 2b + 3c + 4d)`
Applying componendo and dividendo,
`\implies (a - 2b - 3c + 4d + a + 2b - 3c - 4d)/(a - 2b - 3c + 4d - a - 2b + 3c + 4d)= (a - 2b + 3c - 4d + a + 2b + 3c + 4d)/(a - 2b + 3c - 4d - a - 2b - 3c - 4d)`
`\implies (2a-6c)/(-4b+8d)=(2a+6c)/(-4b-8d)`
`\implies (2(a - 3c))/(-4(b - 2d)) = (2(a + 3c))/(4(b + 2d))`
`\implies (a - 3c)/(a + 3c) = (b - 2d)/(b + 2d)`
Applying componendo and dividendo,
`\implies (a - 3c + a + 3c)/(a - 3c - a - 3c) = (b - 2d + b + 2d)/(b - 2d - b - 2d)`
`\implies (2a)/(-6c) = (2b)/(-4d)`
`\implies` – 4da = – 6cb
`\implies` 2ad = 3bc
APPEARS IN
RELATED QUESTIONS
If a : b : : c : d, then prove that
7a+11b : 7a -11b = 7c +11d : 7c - 11d
If a : b =c : d, then prove that `("a"^2 + "c"^2)/("b"^2 + "d"^2) = ("ac")/("bc")`
If a : b = c : d , then prove that `("a"^2 + "ab" +
"b"^2)/("a"^2 - "ab" + "b"^2) = ("c"^2 + "cd"+ "d"^2)/("c"^2 - "cd" + "d"^2)`
Using componendo and idendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)` = 9
If `(3x + 5y)/(3x - 5y) = (7)/(3)`, find x : y.
Given : x = `(sqrt(a^2 + b^2)+sqrt(a^2 - b^2))/(sqrt(a^2 + b^2)-sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^2 + 1)`.
if `(3a + 4b)/(3c + 4d) = (3a - 4b)/(3c - 4d)` Prove that `a/b = c/d`.
If x = `(2a + b)/(a + b)` find the value of `(x + a)/(x - a) + (x + b)/(x - b)`
If x = `(sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1 - sqrt(a - 1)`, using properties of proportion, show that x2 – 2ax + 1 = 0
If x = `"pab"/(a + b)`, provee that `(x + pa)/(x - pa) - (x + pb)/(x - pb) = (2(a^2 - b^2))/(ab)`