Advertisements
Advertisements
Question
Given : x = `(sqrt(a^2 + b^2)+sqrt(a^2 - b^2))/(sqrt(a^2 + b^2)-sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^2 + 1)`.
Solution
x = `(sqrt(a^2 + b^2)+sqrt(a^2 - b^2))/(sqrt(a^2 + b^2)-sqrt(a^2 - b^2))`
By componendo and dividendo,
`(x + 1)/(x - 1) = (2sqrt(a^2 + b^2))/(2sqrt(a^2 - b^2)`
Squaring both sides,
`(x^2 + 2x + 1)/(x^2 - 2x + 1) = (a^2 + b^2)/(a^2 - b^2)`
By componendo and dividendo.
`(2(x^2 + 1))/(4x) = (2a^2)/(2b^2)`
⇒ `(x^2 + 1)/(2x) = (a^2)/(b^2)`
⇒ b2 = `(2a^2x)/(x^2 + 1)`.
Hence proved.
APPEARS IN
RELATED QUESTIONS
Using componendo and dividendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x -5))/(sqrt(3x + 4)-sqrt(3x - 5)) = 9`
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^3 + 1)`
If `a = (4sqrt6)/(sqrt2 + sqrt3)`, find the value of `(a + 2sqrt2)/(a - 2sqrt2) + (a + 2sqrt3)/(a - 2sqrt3)`.
Using the properties of proportion solve for x given `(x^4 + 1)/(2x^2) = 17/8`
If `(x^3 + 3xy^2)/(3x^2y + y^3) = (m^3 + 3mn^2)/(3m^2n + n^3)`, show that nx = my.
If a : b : : c : d, then prove that
(ax+ by): (cx + dy)=(ax - by) : (cx - dy)
If `(7"a" + 12"b")/(7"c" + 12"d")` then prove that `"a"/"b"="c"/"d"`
If a : b : : c : d, prove that `(2a +5b)/(2a - 5b) = (2c + 5d)/(2c - 5d)`
If `(8a - 5b)/(8c - 5a) = (8a + 5b)/(8c + 5d)`, prove that `a/b = c/d`
Using the properties of proportion, solve the following equation for x; given `(x^3 + 3x)/(3x^2 + 1) = (341)/(91)`