Advertisements
Advertisements
Question
If `a/b = c/d,` show that (9a + 13b) (9c - 13d) = (9c + 13b) (9a - 13d).
Solution
We have `a/b = c/d`
`[ "Multiplying both sides by" 9/13]`
`(9a)/(13b) = (9c)/(13d)`
[By componendo and dividendo]
`(9a + 13b)/(9a - 13b) = (9c + 13d)/(9c - 13d)`
(By cross multiplication)
(9a + 13b) (9c - 13d) = (9a - 13b) (9c + 13d).
Hence proved.
APPEARS IN
RELATED QUESTIONS
If `(7m + 2n)/(7m - 2n) = 5/3`, use properties of proportion to find:
- m : n
- `(m^2 + n^2)/(m^2 - n^2)`
if x = `(sqrt(a + 1) + sqrt(a-1))/(sqrt(a + 1) - sqrt(a - 1))` using properties of proportion show that `x^2 - 2ax + 1 = 0`
If a : b = c : d, prove that: (6a + 7b)(3c – 4d) = (6c + 7d)(3a – 4b).
If `x = (sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1) - sqrt(a - 1))`, using properties of proportion show that: x2 – 2ax + 1 = 0.
If (7m +8n)(7p - 8q) = (7m - 8n)(7p + 8q), then prove that m: n = p: q
If a : b = c : d, show that (2a - 7b) (2c + 7d) = (2c - 7d) (2a + 7b).
Find x from the following equations : `(sqrt(a + x) + sqrt(a - x))/(sqrt(a + x) - sqrt(a - x)) = c/d`
If x = `"pab"/(a + b)`, provee that `(x + pa)/(x - pa) - (x + pb)/(x - pb) = (2(a^2 - b^2))/(ab)`
If `(x^2 - 4)/(x^2 + 4) = 3/5`, the value of x is ______.
If x = y, the value of (3x + y) : (5x – 3y) is ______.