Advertisements
Advertisements
Question
If `(7m + 2n)/(7m - 2n) = 5/3`, use properties of proportion to find:
- m : n
- `(m^2 + n^2)/(m^2 - n^2)`
Solution
i. `(7m + 2n)/(7m - 2n) = 5/3`
Applying componendo and dividendo, we get
`(7m + 2n + (7m - 2n))/(7m + 2n - (7m - 2n)) = (5 + 3)/(5 - 3)`
`=> (14m)/(4n) = 8/2`
`=> (7m)/(2n) = 4/1`
`=> m/n = 8/7`
`=>` m : n = 8 : 7
ii. `m/n = 8/7 => m^2/n^2 = 8^2/7^2`
Applying componendo and dividendo, we get
`=> (m^2 + n^2)/(m^2 - n^2) = (8^2 + 7^2)/(8^2 - 7^2)`
`=> (m^2 + n^2)/(m^2 - n^2) = (64 + 49)/(64 - 49)`
`=> (m^2 + n^2)/(m^2 - n^2) = 113/15`
APPEARS IN
RELATED QUESTIONS
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3+ 27y)/(9y^2 + 27)`. Using componendo and dividendo find x : y.
If (7a + 8b)(7c – 8d) = (7a – 8b)(7c + 8d); prove that a : b = c : d.
If (a + b + c + d) (a – b – c + d) = (a + b – c – d) (a – b + c – d), prove that a : b = c : d.
If a : b = c : d , then prove that `("a"^2 + "ab" +
"b"^2)/("a"^2 - "ab" + "b"^2) = ("c"^2 + "cd"+ "d"^2)/("c"^2 - "cd" + "d"^2)`
If a : b :: c : d :: e : f, then prove that `("ae" + "bf")/("ae" - "bf")` = `("ce" + "df")/("ce" - "df")`
If (a + 3b + 2c + 6d) (a – 3b – 2c + 6d) = (a + 3b – 2c – 6d) (a – 3b + 2c – 6d), prove that a : b :: c : d.
If (3x² + 2y²) : (3x² – 2y²) = 11 : 9, find the value of `(3x^4 + 5y^4)/(3x^4 - 5y^4)`
Find x from the equation `(a+ x + sqrt(a^2 x^2))/(a + x - sqrt(a^2 - x^2)) = b/x`
Using Componendo and Dividendo solve for x:
`(sqrt(2x + 2) + sqrt(2x - 1))/(sqrt(2x + 2) - sqrt(2x - 1))` = 3
`(x + y)/z = (y + z)/x = (z + x)/y` is equal to ______.