Advertisements
Advertisements
Question
If (a + 3b + 2c + 6d) (a – 3b – 2c + 6d) = (a + 3b – 2c – 6d) (a – 3b + 2c – 6d), prove that a : b :: c : d.
Solution
`(a + 3b + 2c + 6d)/(a – 3b – 2c + 6d) = (a + 3b – 2c – 6d)/(a – 3b + 2c – 6d)`
⇒ `(a + 3b + 2c + 6d)/(a + 3b – 2c – 6d) = (a – 3b + 2c – 6d)/(a – 3b – 2c + 6d)` ...(by altenendo)
Applying componendo and dividendo
`(a + 3b + 2c + 6d + a + 3b - 2c - 6d)/(a + 3b + 2c + 6d - a - 3b + 2c + 6d)`
= `(a - 3b + 2c - 6d + a - 3b - 2c + 6d)/(a – 3b + 2c - 6d - a + 3b + 2c - 6d)`
⇒ `(2(a + 3b))/(2(2c + 6d)) = (2(a - 3b))/(2(2c - 6d)`
⇒ `(a + 3b)/(2c + 6d) = (a - 3b)/(2c - 6d)` ...(Dividing by 2)
⇒ `(a + 3b)/(a - 3b) = (2c + 6d)/(2c - 6d)` ...(By alternendo)
Again applying componendo and dividendo
`(a + 3b + a - 3b)/(a + 3b - a + 3b) = (2c + 6d + 2c 6d)/(2c + 6d - 2c + 6d)`
⇒ `(2a)/(6b) = (4c)/(12d) = (2c)/(6d)`
⇒ `a/b = c/d. ...["Dividing by" 2/6]`
APPEARS IN
RELATED QUESTIONS
If a : b = c : d, prove that: 5a + 7b : 5a – 7b = 5c + 7d : 5c – 7d.
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that b^2 = (2a^2x)/(x^2 + 1)
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `(x^3 + y^3)/(x^3 - y^3)`
If `x = (sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1) - sqrt(a - 1))`, using properties of proportion show that: x2 – 2ax + 1 = 0.
If a : b = c : d , then prove that `("a"^2 + "ab" +
"b"^2)/("a"^2 - "ab" + "b"^2) = ("c"^2 + "cd"+ "d"^2)/("c"^2 - "cd" + "d"^2)`
If p, q, r ands are In continued proportion, then prove that (p3+q3+r3) ( q3+r3+s3) : : P : s
If y = `((p + 1)^(1/3) + (p - 1)^(1/3))/((p + 1)^(1/3) - (p - 1)^(1/3)` find that y3 - 3py2 + 3y - p = 0.
If a : b : : c : d, prove that (la + mb) : (lc + mb) :: (la – mb) : (lc – mb)
If x = `(4sqrt(6))/(sqrt(2) + sqrt(3)` find the value of `(x + 2sqrt(2))/(x - 2sqrt(2)) + (x + 2sqrt(3))/(x - 2sqrt(3)`
Solve x : `(sqrt(36x + 1) + 6sqrt(x))/(sqrt(36x + 1) -6sqrt(x))` = 9