Advertisements
Advertisements
प्रश्न
If (a + 3b + 2c + 6d) (a – 3b – 2c + 6d) = (a + 3b – 2c – 6d) (a – 3b + 2c – 6d), prove that a : b :: c : d.
उत्तर
`(a + 3b + 2c + 6d)/(a – 3b – 2c + 6d) = (a + 3b – 2c – 6d)/(a – 3b + 2c – 6d)`
⇒ `(a + 3b + 2c + 6d)/(a + 3b – 2c – 6d) = (a – 3b + 2c – 6d)/(a – 3b – 2c + 6d)` ...(by altenendo)
Applying componendo and dividendo
`(a + 3b + 2c + 6d + a + 3b - 2c - 6d)/(a + 3b + 2c + 6d - a - 3b + 2c + 6d)`
= `(a - 3b + 2c - 6d + a - 3b - 2c + 6d)/(a – 3b + 2c - 6d - a + 3b + 2c - 6d)`
⇒ `(2(a + 3b))/(2(2c + 6d)) = (2(a - 3b))/(2(2c - 6d)`
⇒ `(a + 3b)/(2c + 6d) = (a - 3b)/(2c - 6d)` ...(Dividing by 2)
⇒ `(a + 3b)/(a - 3b) = (2c + 6d)/(2c - 6d)` ...(By alternendo)
Again applying componendo and dividendo
`(a + 3b + a - 3b)/(a + 3b - a + 3b) = (2c + 6d + 2c 6d)/(2c + 6d - 2c + 6d)`
⇒ `(2a)/(6b) = (4c)/(12d) = (2c)/(6d)`
⇒ `a/b = c/d. ...["Dividing by" 2/6]`
APPEARS IN
संबंधित प्रश्न
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3+ 27y)/(9y^2 + 27)`. Using componendo and dividendo find x : y.
If `x = (2ab)/(a + b)`, find the value of `(x + a)/(x - a) + (x +b)/(x - b)`.
If `(8a - 5b)/(8c - 5d) = (8a + 5b)/(8c + 5d), "prove that" a/b = c/d.`
If a : b = c : d, show that (2a - 7b) (2c + 7d) = (2c - 7d) (2a + 7b).
If (4a + 5b) (4c – 5d) = (4a – 5d) (4c + 5d), prove that a, b, c, d are in proporton.
If x = `(4sqrt(6))/(sqrt(2) + sqrt(3)` find the value of `(x + 2sqrt(2))/(x - 2sqrt(2)) + (x + 2sqrt(3))/(x - 2sqrt(3)`
Find x from the following equations : `(sqrt(1 + x) + sqrt(1 - x))/(sqrt(1 + x) - sqrt(1 - x)) = a/b`
Find x from the following equations : `(sqrt(12x + 1) + sqrt(2x - 3))/(sqrt(12x + 1) - sqrt(2x - 3)) = (3)/(2)`
If x = `"pab"/(a + b)`, provee that `(x + pa)/(x - pa) - (x + pb)/(x - pb) = (2(a^2 - b^2))/(ab)`
If (m + n) : (n – m) = 5 : 2 ; m : n is ______.