Advertisements
Advertisements
प्रश्न
Find x from the following equations : `(sqrt(12x + 1) + sqrt(2x - 3))/(sqrt(12x + 1) - sqrt(2x - 3)) = (3)/(2)`
उत्तर
`(sqrt(12x + 1) + sqrt(2x - 3))/(sqrt(12x + 1) - sqrt(2x - 3)) = (3)/(2)`
Applying componendo and dividendo,
`(sqrt(12x + 1) + sqrt(2x - 3) + sqrt(12x + 1) - sqrt(2x - 3))/(sqrt(2x + 1) + sqrt(2x - 3) - sqrt(12x + 1) + sqrt(2x - 3)) = (3 + 2)/(3 - 2)`
⇒ `(2sqrt(12x + 1))/(2sqrt(2x - 3)) = (5)/(1)`
⇒ `(sqrt(12x + 1))/(sqrt(2x - 3)) = (5)/(1)`
Squaring both sides,
`(12x + 1)/(2x - 3) = (25)/(1)`
⇒ 50x – 75 = 12x + 1
⇒ 50x – 12x = 1 + 75
⇒ 38x = 76
⇒ x = `(76)/(38)` = 2
∴ x = 2.
APPEARS IN
संबंधित प्रश्न
If `(7m + 2n)/(7m - 2n) = 5/3`, use properties of proportion to find:
- m : n
- `(m^2 + n^2)/(m^2 - n^2)`
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `x/y`
If y = `((p + 1)^(1/3) + (p - 1)^(1/3))/((p + 1)^(1/3) - (p - 1)^(1/3)` find that y3 - 3py2 + 3y - p = 0.
Using componendo and idendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)` = 9
Given that `(a^3 + 3ab^2)/(b^2 + 3a^2b) = (63)/(62)`.
Using Componendo and Dividendo find a : b.
If x = `(2a + b)/(a + b)` find the value of `(x + a)/(x - a) + (x + b)/(x - b)`
If x = `(8ab)/"a + b"` find the value of `(x + 4a)/(x - 4a) + (x + 4b)/(x - 4b)`
Find x from the following equations : `(sqrt(2 - x) + sqrt(2 + x))/(sqrt(2 - x) - sqrt(2 + x)` = 3
Find x from the following equations : `(3x + sqrt(9x^2 - 5))/(3x - sqrt(9x^2 - 5)) = (5)/(1)`
If `(x^2 - 4)/(x^2 + 4) = 3/5`, the value of x is ______.