Advertisements
Advertisements
प्रश्न
If x = `(8ab)/"a + b"` find the value of `(x + 4a)/(x - 4a) + (x + 4b)/(x - 4b)`
उत्तर
x = `(8ab)/"a + b"`
⇒ `x/(4a) = (2b)/"a + b"`
Applying componendo and dividendo,
`(x + 4a)/(x - 4a) = (2b + a + b)/(2b - a - b) = (3b + a)/(b - a)` ...(i)
Again `x/(4b) = (2a)/"a + b"`
Applying componendo and dividendo,
`(x+ 4b)/(x - 4b) = (2a + a + b)/(2a -a - b) = (3a + b)/(a - b)` ...(ii)
Adding (i) and (ii)
`(x + 4a)/(x - 4a) + (x + 4b)/(x - 4b)`
= `(3b + a)/(b - a) + (3a + b)/(a - b)`
= `-(a + 3b)/(a - b) + (3a + b)/(a - b)`
= `(-a - 3b + 3a + b)/(a - b)`
= `(2a - 2b)/(a - b)`
= `(2(a - b))/(a - b)`
= 2.
APPEARS IN
संबंधित प्रश्न
If a : b = c : d, prove that: xa + yb : xc + yd = b : d.
Given, `a/b = c/d`, prove that: `(3a - 5b)/(3a + 5b) = (3c - 5d)/(3c + 5d)`
If `x = (6ab)/(a + b)`, find the value of `(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b)`.
If `x = (2ab)/(a + b)`, find the value of `(x + a)/(x - a) + (x +b)/(x - b)`.
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that b^2 = (2a^2x)/(x^2 + 1)
If `p/q = r/s`, prove that `(2p + 3q)/(2p - 3q) = (2r + 3s)/(2r - 3s)`.
If `(3x + 4y)/(3u + 4v) = (3x - 4y)/(3u - 4v)`, then show that `x/y = u/v`.
If a : b : : c : d, prove that `(2a +5b)/(2a - 5b) = (2c + 5d)/(2c - 5d)`
If x = `(2mab)/(a + b)`, find the value of `(x + ma)/(x - ma) + (x + mb)/(x - mb)`
If x = `(root(3)(a + 1) + root(3)(a - 1))/(root(3)(a + 1) - root(3)(a - 1)`,prove that :
x³ – 3ax² + 3x – a = 0