Advertisements
Advertisements
Question
If x = `(8ab)/"a + b"` find the value of `(x + 4a)/(x - 4a) + (x + 4b)/(x - 4b)`
Solution
x = `(8ab)/"a + b"`
⇒ `x/(4a) = (2b)/"a + b"`
Applying componendo and dividendo,
`(x + 4a)/(x - 4a) = (2b + a + b)/(2b - a - b) = (3b + a)/(b - a)` ...(i)
Again `x/(4b) = (2a)/"a + b"`
Applying componendo and dividendo,
`(x+ 4b)/(x - 4b) = (2a + a + b)/(2a -a - b) = (3a + b)/(a - b)` ...(ii)
Adding (i) and (ii)
`(x + 4a)/(x - 4a) + (x + 4b)/(x - 4b)`
= `(3b + a)/(b - a) + (3a + b)/(a - b)`
= `-(a + 3b)/(a - b) + (3a + b)/(a - b)`
= `(-a - 3b + 3a + b)/(a - b)`
= `(2a - 2b)/(a - b)`
= `(2(a - b))/(a - b)`
= 2.
APPEARS IN
RELATED QUESTIONS
If a : b : : c : d, then prove that
7a+11b : 7a -11b = 7c +11d : 7c - 11d
If `(7"a" + 12"b")/(7"c" + 12"d")` then prove that `"a"/"b"="c"/"d"`
Show, that a, b, c, d are in proportion if:
(6a + 7b) : (6c + 7d) : : (6a - 7b) : (6c - 7d)
Given that `(a^3 + 3ab^2)/(b^2 + 3a^2b) = (63)/(62)`.
Using Componendo and Dividendo find a : b.
Solve for x : `(1 - px)/(1 + px) = sqrt((1 + qx)/(1 - qx)`
If a : b = c : d, show that (2a - 7b) (2c + 7d) = (2c - 7d) (2a + 7b).
If a : b : : c : d, prove that `(2a +5b)/(2a - 5b) = (2c + 5d)/(2c - 5d)`
Find x from the following equations : `(sqrt(2 - x) + sqrt(2 + x))/(sqrt(2 - x) - sqrt(2 + x)` = 3
Find x from the following equations : `(sqrt(1 + x) + sqrt(1 - x))/(sqrt(1 + x) - sqrt(1 - x)) = a/b`
Using the properties of proportion, solve the following equation for x; given `(x^3 + 3x)/(3x^2 + 1) = (341)/(91)`