Advertisements
Advertisements
Question
If a : b : : c : d, then prove that
7a+11b : 7a -11b = 7c +11d : 7c - 11d
Solution
7a+11b: 7a -11b = 7c+11d : 7c -11d
`"a"/"b" = "c"/"d"`
Multiplying both sides by `7/11`
`=> "a"/"b" xx 7/11 = "c"/"d" xx 7/11`
`=> (7"a")/(11"b") = (7"c")/(11"d")`
Applying componendo and dividendo,
`(7"a" + 11"b")/(7"a" - 11"b") = (7"c" + 11"d")/(7"c" - 11"d")`
Hence, 7a+11b : 7a -11b = 7c +11d : 7c - 11d
APPEARS IN
RELATED QUESTIONS
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3+ 27y)/(9y^2 + 27)`. Using componendo and dividendo find x : y.
If a : b = c : d, prove that: (9a + 13b)(9c – 13d) = (9c + 13d)(9a – 13b).
If `a = (4sqrt6)/(sqrt2 + sqrt3)`, find the value of `(a + 2sqrt2)/(a - 2sqrt2) + (a + 2sqrt3)/(a - 2sqrt3)`.
If `x = (sqrt(m + n) + sqrt(m - n))/(sqrt(m + n) - sqrt(m - n))`, express n in terms of x and m.
If `(3x + 5y)/(3x - 5y) = (7)/(3)`, find x : y.
If `p/q = r/s`, prove that `(2p + 3q)/(2p - 3q) = (2r + 3s)/(2r - 3s)`.
Find x from the following equations : `(sqrt(x + 4) + sqrt(x - 10))/(sqrt(x + 4) - sqrt(x - 10)) = (5)/(2)`
Given `x = (sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2)`. Use componendo and dividendo to prove that: `b^2 = (2a^2x)/(x^2 + 1)`
If x = `"pab"/(a + b)`, provee that `(x + pa)/(x - pa) - (x + pb)/(x - pb) = (2(a^2 - b^2))/(ab)`
Find x from the equation `(a+ x + sqrt(a^2 x^2))/(a + x - sqrt(a^2 - x^2)) = b/x`