Advertisements
Advertisements
Question
If a : b = c : d, prove that: (9a + 13b)(9c – 13d) = (9c + 13d)(9a – 13b).
Solution
Given, `a/b = c/d`
`=> (9a)/(13b) = (9c)/(13d)` ...`("Multiplying each side by" 9/13)`
`=> (9a + 13b)/(9a - 13b) = (9c + 13d)/(9c - 13d)` ...(By componendo and divdendo)
`=> (9a + 13b)(9c - 13d) = (9c + 13d)(9a - 13b)`
APPEARS IN
RELATED QUESTIONS
If a : b = c : d, prove that: (6a + 7b)(3c – 4d) = (6c + 7d)(3a – 4b).
If (4a + 9b)(4c – 9d) = (4a – 9b)(4c + 9d), prove that: a : b = c : d.
If 7x – 15y = 4x + y, find the value of x : y. Hence, use componendo and dividendo to find the values of:
`(9x + 5y)/(9x - 5y)`
If a : b : : c : d, then prove that
`(4"a" + 9"b")/(4"c" + 9"d") = (4"a" - 9"b")/(4"c" - 9"d")`
Find x, if `16((a - x)/(a + x))^3 = (a + x)/(a - x)`.
If `(3x + 5y)/(3x - 5y) = (7)/(3)`, find x : y.
If a : b : : c : d, prove that `(2a +5b)/(2a - 5b) = (2c + 5d)/(2c - 5d)`
If a : b : : c : d, prove that (2a + 3b)(2c – 3d) = (2a – 3b)(2c + 3d)
If (a + 3b + 2c + 6d) (a – 3b – 2c + 6d) = (a + 3b – 2c – 6d) (a – 3b + 2c – 6d), prove that a : b :: c : d.
Find x from the following equations : `(sqrt(a + x) + sqrt(a - x))/(sqrt(a + x) - sqrt(a - x)) = c/d`