Advertisements
Advertisements
Question
Find x from the following equations : `(sqrt(a + x) + sqrt(a - x))/(sqrt(a + x) - sqrt(a - x)) = c/d`
Solution
`(sqrt(a + x) + sqrt(a - x))/(sqrt(a + x) - sqrt(a - x)) = c/d`
Applying componendo and dividendo,
`(sqrt(a + x) + sqrt(a - x) + sqrt(a + x) - sqrt(a - x))/(sqrt(a+ x) + sqrt(a - x) - sqrt(a + x) + sqrt(a - x)) = (c + d)/(c - d)`
⇒ `(2sqrt(a + x))/(2sqrt(a - x)) = (c + d)/(c - d)`
⇒ `sqrt(a + x)/(sqrt(a - x)) = (c + d)/(c - d)`
Squaring both sides
`(a + x)/(a - x) - (c + d)^2/(c - d)^2`
Again applying componendo and dividendo
`(a + x + a - x)/(a + x - a + x) = ((c + d)^2 + (c - d)^2)/((c + d)^2 - (c - d)^2`
⇒ `(2a)/(2x) = (2(c^2 + d^2))/(4cd)`
⇒ `a/x = (c^2 + d^2)/(2cd)`
⇒ x(c2 + d2) = 2acd
⇒ x = `(2acd)/(c^2 + d^2)`.
APPEARS IN
RELATED QUESTIONS
if x = `(sqrt(a + 1) + sqrt(a-1))/(sqrt(a + 1) - sqrt(a - 1))` using properties of proportion show that `x^2 - 2ax + 1 = 0`
If a : b = c : d, prove that: (6a + 7b)(3c – 4d) = (6c + 7d)(3a – 4b).
If (7a + 8b)(7c – 8d) = (7a – 8b)(7c + 8d); prove that a : b = c : d.
Using componendo and dividendo, find the value of x:
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)) = 9`
If a : b = c : d , then prove that `("a"^2 + "ab" +
"b"^2)/("a"^2 - "ab" + "b"^2) = ("c"^2 + "cd"+ "d"^2)/("c"^2 - "cd" + "d"^2)`
If a : b :: c : d :: e : f, then prove that `("ae" + "bf")/("ae" - "bf")` = `("ce" + "df")/("ce" - "df")`
Find x from the following equations : `(sqrt(x + 4) + sqrt(x - 10))/(sqrt(x + 4) - sqrt(x - 10)) = (5)/(2)`
If (3x² + 2y²) : (3x² – 2y²) = 11 : 9, find the value of `(3x^4 + 5y^4)/(3x^4 - 5y^4)`
Find x from the equation `(a+ x + sqrt(a^2 x^2))/(a + x - sqrt(a^2 - x^2)) = b/x`
If (a + b) : (a – b) = 13 : 3 ; a : b is ______.