Advertisements
Advertisements
Question
If a : b = c : d, prove that: (6a + 7b)(3c – 4d) = (6c + 7d)(3a – 4b).
Solution
Given, `a/b = c/d`
`=> (6a)/(7b) = (6c)/(7d)` ...`("Multiplying each side by" 6/7)`
`=> (6a + 7b)/(7b) = (6c + 7d)/(7d)` ...(By componendo)
`=> (6a + 7b)/(6c + 7d) = (7b)/(7d) = b/d` ...(1)
Also, `a/b = c/d`
`=> (3a)/(4b) = (3c)/(4d)` ...`("Mutipling each side by" 3/4)`
`=> (3a - 4b)/(4b) = (3c - 4d)/(4d)` ...(By dividendo)
`=> (3a - 4b)/(3c - 4d) = (4b)/(4d) = b/d` ...(2)
From (1) and (2)
`(6a + 7b)/(6c + 7d) = (3a - 4b)/(3c - 4d)`
(6a + 7b)(3c – 4d) = (6c + 7d)(3a – 4b)
APPEARS IN
RELATED QUESTIONS
Using componendo and dividendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x -5))/(sqrt(3x + 4)-sqrt(3x - 5)) = 9`
If (a + b + c + d) (a – b – c + d) = (a + b – c – d) (a – b + c – d), prove that a : b = c : d.
If x = `(root (3)("m + 1") + root (3)("m - 1"))/(root (3)("m + 1") + root (3)("m - 1")` then prove that x3 - 3mx2 + 3x = m
If `p/q = r/s`, prove that `(2p + 3q)/(2p - 3q) = (2r + 3s)/(2r - 3s)`.
If (4a + 5b) (4c – 5d) = (4a – 5d) (4c + 5d), prove that a, b, c, d are in proporton.
If x = `(8ab)/"a + b"` find the value of `(x + 4a)/(x - 4a) + (x + 4b)/(x - 4b)`
Find x from the following equations : `(sqrt(x + 4) + sqrt(x - 10))/(sqrt(x + 4) - sqrt(x - 10)) = (5)/(2)`
Find x from the following equations : `(sqrt(1 + x) + sqrt(1 - x))/(sqrt(1 + x) - sqrt(1 - x)) = a/b`
Given that `(a^3 + 3ab^2)/(b^3 + 3a^2b) = (63)/(62)`. Using componendo and dividendo find a: b.
If `(by + cz)/(b^2 + c^2) = (cz + ax)/(c^2 + a^2) = (ax + by)/(a^2 + b^2)`, prove that each of these ratio is equal to `x/a = y/b = z/c`