Advertisements
Advertisements
Question
If `(by + cz)/(b^2 + c^2) = (cz + ax)/(c^2 + a^2) = (ax + by)/(a^2 + b^2)`, prove that each of these ratio is equal to `x/a = y/b = z/c`
Solution
`(by + cz)/(b^2 + c^2) = (cz + ax)/(c^2 + a^2) = (ax + by)/(a^2 + b^2)`
= `(2(ax + by + cz))/(2(a^2 + b^2 + c^2)`
= `(ax + by + cz)/(a^2 + b^2 + c^2)` ...(Adding)
Now `(by + cz)/(b^2+ c^2) = (ax + by + cz)/(a^2 + b^2 + c^2)`
⇒ `(by + cz)/(ax + by + cz) = (b^2 + c^2)/(a^2 + b^2 + c^2)` ...(By alternendo)
⇒ `(by+ cz - ax- by- cz)/(ax + by + cz)`
= `(b^2 + c^2 - a^2 - b^2 - c^2)/(a^2 + b^2 + c^2)`
⇒ `(-ax)/(ax + by + cz) = (-a)/(a^2 + b^2 + c^2)`
⇒ `x/(ax + by + cz) = a/(a^2 + b^2 + c^2)`
⇒ `x/a = (ax + by + cz)/(a^2 + b^2 + c^2)` ...(i)
Similarly we can prove that
`y/b = "ax + by + cz"/(a^2 + b^2 + c^2)` ...(ii)
and `z/c = "ax + by + cz"/(a^2 + b^2 + c^2)` ...(iii)
from (i), (ii) and (iii)
Hence `x/a = y/b = z/c`.
APPEARS IN
RELATED QUESTIONS
If `(7m + 2n)/(7m - 2n) = 5/3`, use properties of proportion to find:
- m : n
- `(m^2 + n^2)/(m^2 - n^2)`
If `x = (sqrt(m + n) + sqrt(m - n))/(sqrt(m + n) - sqrt(m - n))`, express n in terms of x and m.
If `p/q = r/s`, prove that `(2p + 3q)/(2p - 3q) = (2r + 3s)/(2r - 3s)`.
If `(3x + 4y)/(3u + 4v) = (3x - 4y)/(3u - 4v)`, then show that `x/y = u/v`.
If x = `(2a + b)/(a + b)` find the value of `(x + a)/(x - a) + (x + b)/(x - b)`
If x = `(8ab)/"a + b"` find the value of `(x + 4a)/(x - 4a) + (x + 4b)/(x - 4b)`
Find x from the following equations : `(sqrt(x + 4) + sqrt(x - 10))/(sqrt(x + 4) - sqrt(x - 10)) = (5)/(2)`
Given `x = (sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2)`. Use componendo and dividendo to prove that: `b^2 = (2a^2x)/(x^2 + 1)`
Using the properties of proportion, solve the following equation for x; given `(x^3 + 3x)/(3x^2 + 1) = (341)/(91)`
If `(x^2 - 4)/(x^2 + 4) = 3/5`, the value of x is ______.