Advertisements
Advertisements
Question
If `x = (sqrt(m + n) + sqrt(m - n))/(sqrt(m + n) - sqrt(m - n))`, express n in terms of x and m.
Solution
`x = (sqrt(m + n) + sqrt(m - n))/(sqrt(m + n) - sqrt(m - n)`
Applying componendo and dividendo,
`(x + 1)/(x - 1) = (sqrt(m + n) + sqrt(m - n) + sqrt(m + n) - sqrt(m - n))/(sqrt(m + n) + sqrt(m - n) - sqrt(m + n) + sqrt(m - n))`
`(x + 1)/(x - 1) = (2sqrt(m + n))/(2sqrt(m - n))`
Squaring both sides,
`(x^2 + 2x + 1)/(x^2 - 2x + 1) = (m + n)/(m - n)`
Applying componendo and dividendo,
`(x^2 + 2x + 1 + x^2 - 2x + 1 )/(x^2 + 2x + 1 - x^2 + 2x - 1) =
(m + n + m - n)/(m + n - m + n)`
`(2x^2 + 2)/(4x) = (2m)/(2n)`
`(x^2 + 1)/(2x) = m/n`
`(x^2 + 1)/(2mx) = 1/n`
`n = (2mx)/(x^2 + 1)`
APPEARS IN
RELATED QUESTIONS
if `(x^2 + y^2)/(x^2 - y^2) = 17/8`then find the value of :
1) x : y
2) `(x^3 + y^3)/(x^3 - y^3)`
If `(a - 2b - 3c + 4d)/(a + 2b - 3c - 4d) = (a - 2b + 3c - 4d)/(a + 2b + 3c + 4d)`, show that: 2ad = 3bc.
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that b^2 = (2a^2x)/(x^2 + 1)
If a : b : : c : d, then prove that
`(4"a" + 9"b")/(4"c" + 9"d") = (4"a" - 9"b")/(4"c" - 9"d")`
If `(3x + 5y)/(3x - 5y) = (7)/(3)`, find x : y.
If `(5x + 7y)/(5u + 7v) = (5x - 7y)/(5u - 7v)`, show that `x/y = u/v`
Find x from the following equations : `(sqrt(2 - x) + sqrt(2 + x))/(sqrt(2 - x) - sqrt(2 + x)` = 3
Solve for `x : 16((a - x)/(a + x))^3 = (a + x)/(a - x)`
If x = `(sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1 - sqrt(a - 1)`, using properties of proportion, show that x2 – 2ax + 1 = 0
Give `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` Using componendo and dividendo find x : y.